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Background: An artificial intelligence (AI) model using chest radiography (CXR) may provide good performance in making
prognoses for COVID-19.

Objective: We aimed to develop and validate a prediction model using CXR based on an AI model and clinical variables to
predict clinical outcomes in patients with COVID-19.

Methods: This retrospective longitudinal study included patients hospitalized for COVID-19 at multiple COVID-19 medical
centers between February 2020 and October 2020. Patients at Boramae Medical Center were randomly classified into training,
validation, and internal testing sets (at a ratio of 8:1:1, respectively). An AI model using initial CXR images as input, a logistic
regression model using clinical information, and a combined model using the output of the AI model (as CXR score) and clinical
information were developed and trained to predict hospital length of stay (LOS) ≤2 weeks, need for oxygen supplementation,
and acute respiratory distress syndrome (ARDS). The models were externally validated in the Korean Imaging Cohort of COVID-19
data set for discrimination and calibration.

Results: The AI model using CXR and the logistic regression model using clinical variables were suboptimal to predict hospital
LOS ≤2 weeks or the need for oxygen supplementation but performed acceptably in the prediction of ARDS (AI model area
under the curve [AUC] 0.782, 95% CI 0.720-0.845; logistic regression model AUC 0.878, 95% CI 0.838-0.919). The combined
model performed better in predicting the need for oxygen supplementation (AUC 0.704, 95% CI 0.646-0.762) and ARDS (AUC
0.890, 95% CI 0.853-0.928) compared to the CXR score alone. Both the AI and combined models showed good calibration for
predicting ARDS (P=.079 and P=.859).

Conclusions: The combined prediction model, comprising the CXR score and clinical information, was externally validated as
having acceptable performance in predicting severe illness and excellent performance in predicting ARDS in patients with
COVID-19.

(J Med Internet Res 2023;25:e42717) doi: 10.2196/42717
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Introduction

SARS-CoV-2 infection causes COVID-19 pneumonia of varying
severity. As of March 18, 2022, the global cumulative number
of confirmed COVID-19 cases was more than 464.8 million,
with >6 million deaths [1]. The occurrence of new variants of
SARS-CoV-2 makes appropriate medical resource allocation,
based on COVID-19 severity, challenging. A reliable prediction
model for COVID-19 pneumonia would help in screening
patients at a high risk of progression to severe disease or
respiratory failure in a timely manner [2]. While many
COVID-19 prediction models have been suggested, most have
not been sufficiently validated [3].

Chest radiography (CXR) is not recommended for confirmation
of diagnosis or assessment of COVID-19 severity [4]. Most
studies have developed prognosis prediction models using
clinical information and chest computed tomography (CT) scans
[5,6]. However, with the high volume of patients during the
pandemic, CXR is used more widely than chest CT because of
its rapid speed, better portability, and lower cost [7,8].
Additionally, the role of CXR has been reexamined using
advanced deep learning (DL) techniques. A DL model could
make prognoses for COVID-19 more accurately than
conventional severity score systems [9]. CXR information can
increase the accuracy of severity assessment or risk stratification.
An artificial intelligence (AI) model using CXR alone performed
well in predicting COVID-19 severity [10]. A recent study
showed that an AI model with CXR had the potential to predict
mortality more accurately [11]. An external validation study
reported that predictive modeling with CXR and clinical

information improved prognoses compared to clinical
information alone or radiologist-derived severity scores [12].

We aimed to create an AI model using CXR and clinical
variables to predict early recovery, severe illness, and acute
respiratory distress syndrome (ARDS) in patients with
COVID-19 and validate these models in an external cohort.

Methods

Our study adhered to the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis) guidelines [13].

Study Design and Eligibility Criteria
This retrospective longitudinal study included hospitalized
patients with COVID-19 in an isolation ward who received
negative pressure ventilation from February 2020 to October
2020. COVID-19 was diagnosed by confirmatory quantitative
reverse transcription–polymerase chain reaction using upper or
lower respiratory tract samples. A protocol was used for
systematic questionnaires and anthropometric measurements
to ascertain demographic information, initial symptoms, and
comorbidities of the patients. Within 24 hours of hospitalization,
the patients routinely underwent blood tests and
anteroposterior-view CXR. Medical decisions regarding
treatment and discharge to home were made by each physician
based on guidance from the Korea Disease Control and
Prevention Agency. We excluded patients with missing clinical
information or when there were technical difficulties in reading
CXR images due to compromised software compatibility.
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For model training, validation, and internal testing, we used
CXR images and clinical information from patients who were
admitted at Boramae Medical Center (BMC), Seoul, Korea. For
external testing, we used the Korean Imaging Cohort of
COVID-19 (KICC-19) data set, which collects imaging data
and clinical information from patients with COVID-19 at 17
medical centers in Korea. Details on the profiles of the KICC-19
data set were published in an earlier report [14].

Variables and Measurements
Data were collected on baseline characteristics, including age,
sex, BMI, smoking status, and comorbidities. A protocolized
questionnaire was used at the BMC to identify the symptoms
of patients with COVID-19, including abnormal smell or taste,
myalgia, sore throat, cough, sputum, chest discomfort, dyspnea,
fever or chills, rhinorrhea, and nausea or diarrhea. In the
KICC-19 data set, we extracted information on symptoms such
as cough, dyspnea, and fever. We obtained laboratory test
results, including white blood cell counts and lymphocyte
percentage, as well as C-reactive protein (CRP), procalcitonin,
troponin-I, and lactate dehydrogenase levels. Information on
treatment and disease severity was also acquired. Information
was obtained on clinical outcomes, including hospital length of
stay (LOS) and oxygen supplementation, as well as the use of
a high-flow nasal cannula (HFNC), mechanical ventilator (MV),
or extracorporeal membrane oxygenation (ECMO). ARDS was
operationally defined as a medical condition needing an HFNC,
MV, or ECMO.

We obtained 26,684 CXR images with information on the
location and extent of pneumonia provided by the Radiological
Society of North America (RSNA) pneumonia-detection
challenge. We extracted the initial CXR images from the
electronic medical records of patients hospitalized for
COVID-19 at the BMC and registered them in the KICC-19.

Study Outcomes
The primary outcome was the performance of the AI model in
predicting clinical outcomes such as hospital LOS ≤2 weeks,
need for oxygen supplementation, and development of ARDS
based on CXR images. The output value from this model was
defined as the CXR score. The secondary outcome was whether
the performance of the prediction model using clinical
information could be improved by combining it with the CXR
score.

Development of the AI Model
The DL model was implemented using the open-source PyTorch
library (version 1.7.0+cu101) with the CUDA/cuDNN (versions
10.1 and 7.6.3, respectively) computing frameworks on a single
graphics processing unit (Geforce RTX 3090; NVIDIA). The
overall data flow and proposed model architecture is
summarized in Figure 1. We developed our model in two stages,
to ensure robust performance: (1) backbone training and (2)
model training. First, we trained the backbone of our model
with a data set (n=26,684) including information on the location
and extent of pneumonia from the RSNA pneumonia-detection
challenge to boost performance by learning robust features from
a large quantity of data. The EfficientNet B5 architecture was
used as the backbone architecture due to its computational
efficiency and performance compared to those of other
convolutional neural network architectures, such as ResNet and
DenseNet. For backbone training, we attached a region proposal
network, a region-of-interest pooling layer, and a classifier
network to the backbone, which was pretrained on ImageNet,
to configure the faster region-based convolutional neural
network (RCNN) architecture (Multimedia Appendix 1, Figure
S1). We trained the faster-RCNN model with the Adam

optimizer under the following settings: learning rate of 1×10–6,
learning decay rate of 0.8, learning rate decay step size of 4,
and batch size of 3. We selected the model with the minimum
validation loss, which was a combination of classification and
bounding box regression loss. After the backbone training stage,
the backbone learns to extract pertinent features for detecting
pneumonia from posteroanterior or anteroposterior CXR images.

Next, we developed and trained the model for the classification
of clinical outcomes. The backbone was followed by 3 branches:
one each for hospital LOS ≤2 weeks, oxygen supplementation,
and development of ARDS. Each branch consisted of an average
pooling layer, a 2D convolution layer, a clinical data channel,
and a fully connected layer. The outputs of the model were 3
probabilities between 0 and 1: one each for hospital LOS ≤2
weeks, oxygen supplementation, and development of ARDS;
for each output, a probability >0.5 indicated a positive
prediction. We initialized the weights of the models using the
weights from the previous backbone training stage. We fixed
the weights of the backbone during the model training stage to
keep the feature extractor untouched. To train the proposed
model, we used a configuration of the Adam optimizer with a

learning rate of 1×10–4 and batch size of 12. We selected the
model with minimum validation loss, that is, classification loss.

Figure 1. Illustration of the data flow model for artificial intelligence–assisted prediction. Our deep learning model was developed in two stages to
ensure robust performance: (1) backbone training and (2) model training. ARDS: acute respiratory distress syndrome. Conv2D: Convolution 2D.
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Statistical Analyses
Demographic information, symptoms, laboratory test results,
treatments, and study outcomes were compared among the
training, validation, internal testing, and external testing sets
using the Student 2-tailed t test or Mann-Whitney U test for
continuous variables and the Pearson chi-square test or Fisher
exact test for categorical variables. Univariate and multivariate
logistic regression analyses were performed using the stepwise
selection method. For 3 different prediction models for each
clinical outcome (model 1, using the CXR score derived from
the DL model; model 2, using clinical information derived from
the multivariable regression model; and model 3, using both
the CXR scores and clinical information from the multivariable
regression model), performance was evaluated using sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy, and the area under the receiver operating
characteristic curve (AUROC). We considered an AUROC <0.7
suboptimal performance, 0.7 to 0.79 acceptable, 0.8 to 0.89
excellent, and ≥0.9 outstanding [15]. A comparison of the
predictive performance between the 2 different models used the
DeLong test [16] or the bootstrap test [17]. Statistical
significance was set at P<.05. Calibration of the CXR
score–based models (models 1 and 3) was evaluated by plotting
the observed versus predicted probabilities and using the P value
for the Spiegelhalter statistic [18,19]. Statistical significance in
the Spiegelhalter z test indicates poor calibration. All the
statistical analyses were performed using R (version 4.1.0; R
Core Team).

Ethics Approval
The Institutional Review Board Committee of the Boramae
Medical Center (BMC) approved the study protocol and waived
the need for informed consent for access to the electronic
medical records (30-2020-307).

Results

Patient Characteristics
We used CXR images and clinical information from hospitalized
patients with COVID-19 for model training (n=589), validation
(n=75), and internal testing (n=75); we used patients with
COVID-19 (n=467) registered in the KICC-19 for external
testing. The median interval between symptom onset and CXR
was 3 (IQR 1-6) days. The baseline characteristics of the
combined total of 1206 patients are summarized in Table 1. The
mean age was 53.4 years; 52.3% (n=631) were female; and
9.4% (n=113) were every-day smokers. Comorbidities included
hypertension (n=317, 26.3%), diabetes mellitus (n=188, 15.6%),
cancer (n=74, 6.1%), cardiovascular disease (n=73, 6.1%),
chronic lung disease (n=50, 4.1%), chronic liver disease (n=26,
2.2%), and chronic kidney disease (n=20, 1.7%). The baseline
characteristics of the patients in the training, validation, and
internal testing sets are described in Multimedia Appendix 1,
Table S1.

The clinical features of the 1206 patients are presented in Table
2. Cough, fever, and dyspnea were present in 53% (n=639),
51.7% (n=624), and 17.7% (n=213) of patients, respectively.
At baseline assessment, mean white blood cell (WBC) count
was 5024 cells/µL, with 29.4% lymphocytes. The median CRP
and procalcitonin levels were 0.42 mg/dL and 0.03 ng/mL,
respectively. Treatment for COVID-19 was remdesivir in 5.8%
(n=70) and corticosteroids in 9.5% (n=115) of patients. Eligible
patients were hospitalized for a median of 15 (IQR 11-24) days.
HFNC, MV, and ECMO were used in 5.4% (n=65), 5% (n=60),
and 1.5% (n=18) of patients, respectively. The clinical features
of patients included in the training, validation, and internal
testing sets are described in Multimedia Appendix 1, Table S2.

Table 1. Baseline characteristics of the patients diagnosed with COVID-19 in different data sets. P values were estimated using the Student 2-tailed t
test or the Mann-Whitney U test for continuous variables and the Pearson chi-square test or Fisher exact test for categorical variables.

P valueKorean Imaging Cohort of
COVID-19 (n=467)

Boramae Medical Center
(n=739)

Total (n=1206)Characteristics

.0151.8 (19.4)54.5 (17.6)53.4 (18.4)Age, mean (SD)

.23255 (54.6)376 (50.9)631 (52.3)Female, n (%)

.00429 (6.2)84 (11.3)113 (9.4)Every-day smoker, n (%)

Comorbidities, n (%)

.01104 (22.3)213 (28.8)317 (26.3)Hypertension

.7170 (15)118 (16.0)188 (15.6)Diabetes mellitus

.2023 (4.9)51 (6.9)74 (6.1)Cancer

.2423 (4.9)50 (6.8)73 (6.1)Cardiovascular disease

.0412 (2.6)38 (5.1)50 (4.1)Chronic lung disease

.0022 (0.4)24 (3.2)26 (2.2)Chronic liver disease

.917 (1.5)13 (1.8)20 (1.7)Chronic kidney disease
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Table 2. Clinical manifestations of the patients diagnosed with COVID-19 in different data sets. P values were estimated using the Student 2-tailed t
test or the Mann-Whitney U test for continuous variables and the Pearson chi-square test or Fisher exact test for categorical variables.

P valueKorean Imaging Cohort
of COVID-19 (n=467)

Boramae Medical Center
(n=739)

Total (n=1206)Clinical manifestations

Symptoms, n (%)

.003222 (47.5)417 (56.4)639 (53)Cough

.49248 (53.1)376 (50.9)624 (51.7)Fever

.7985 (18.2)128 (17.3)213 (17.7)Dyspnea

Laboratory tests

.0056007 (1926)4984 (1932)5024 (1941)White blood cells (cells/µL), mean (SD)

.7029.2 (9.0)29.5 (11.4)29.4 (10.9)Lymphocytes (%), mean (SD)

<.0010.30 (0.10 to 0.38)0.65 (0.17 to 3.14)0.42 (0.12 to 1.83)C-reactive protein (mg/dL), median (IQR)

.020.02 (0.00 to –0.04)0.03 (0.02 to –0.05)0.03 (0.01 to –0.04)Procalcitonin (ng/mL), median (IQR)

Treatment, n (%)

<.00112 (2.6)58 (7.8)70 (5.8)Remdesivir

.5541 (8.8)74 (10)115 (9.5)Corticosteroid

<.00122 (15 to 30)13 (10 to 19)15 (11 to 24)Length of stay (days), median (IQR)

<.001111 (23.8)451 (61)562 (46.6)Length of stay ≤2 weeks, n (%)

<.00162 (13.3)160 (21.7)222 (18.4)Oxygen supplementation, n (%)

<.00110 (2.1)55 (7.4)65 (5.4)High-flow nasal cannula, n (%)

.1529 (6.2)31 (4.2)60 (5)Mechanical ventilator, n (%)

.0811 (2.4)7 (0.9)18 (1.5)Extracorporeal membrane oxygenator, n (%)

Performance of the Prediction Model
The AI model was trained, validated, and internally tested using
the CXR images of the hospitalized patients with COVID-19.
The performance of each model in the internal testing set is
described in Multimedia Appendix 1, Figure S2. The probability
of each prespecified outcome (CXR score) was calculated in
the external testing set (ie, KICC-19); the AUROCs were 0.602
(95% CI 0.540-0.664) for hospital LOS ≤2 weeks, 0.647 (95%
CI 0.586-0.708) for oxygen supplementation, and 0.782 (95%
CI 0.720-0.845) for development of ARDS. Representative heat
maps visually explain how DL preferentially recognized
pneumonic lesions in the CXR images (Figure 2). The heat
maps used the feature maps from the clinical data channel of
the model weighted by the output probabilities.

We identified clinical variables that were significantly associated
with clinical outcomes in hospitalized patients with COVID-19
(Multimedia Appendix 1, Tables S3-4; Table 3). Patients with
hypertension, chronic liver disease, low lymphocyte count, or
corticosteroid treatment were less likely to be discharged from
the hospital within 2 weeks. Patients who needed oxygen
supplementation were older; had hypertension, diabetes, or
dyspnea; and had a higher level of inflammatory markers,
including CRP and procalcitonin. ARDS was more common in
those who were older, had dyspnea, or had higher procalcitonin
levels. The performance of the prediction models using
significant clinical variables was evaluated in the external testing
set, with AUROCs of 0.618 (95% CI 0.558-0.678) for hospital
LOS ≤2 weeks, 0.567 (95% CI 0.501-0.632) for oxygen
supplementation, and 0.878 (95% CI 0.835-0.920) for
development of ARDS.
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Figure 2. Representative cases in the test set database. (A) Chest radiograph of a 65-year-old woman who survived for 32 days after hospitalization.
She had no cardiopulmonary comorbidities. She required oxygen supplementation but did not meet the operational definition of acute respiratory distress
syndrome. The radiograph shows multiple consolidations and ground-glass opacities in both lung fields. The heat map mainly distinguishes the focal
consolidative opacities of both lung fields. The image demonstrates red areas not only in the right lower and left upper lung fields but also around both
shoulder joints, because lung segmentation was not applied in our model. The combined model, using chest radiography scores and clinical information,
predicted a 40.9% chance of hospital length of stay ≤2 weeks, 74.5% chance of oxygen supplementation, and 33% chance of developing acute respiratory
distress syndrome. (B) Chest radiograph of a 93-year-old man who died after 18 days of hospitalization. This patient had a previous history of heart
disease. He required oxygen supplementation and met the operational definition for acute respiratory distress syndrome. The radiograph shows diffuse
ground-glass opacities in both lung fields. The heat map mainly distinguishes the bilateral ground-glass opacities of both lung fields. The combined
model, using chest radiography scores and clinical information, predicted a 57.8% chance of hospital length of stay ≤2 weeks, 96.4% chance of oxygen
supplementation, and 99.1% chance of acute respiratory distress syndrome.
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Table 3. Univariable and multivariable logistic regression model for each clinical outcome in COVID-19 patients hospitalized at Boramae Medical
Center.

P valueAdjusted odds ratio (95% CI)P valueUnadjusted odds ratio (95% CI)Clinical outcomes

Hospital length of stay ≤2 weeks

.641.00 (0.99 to 1.01).010.99 (0.98 to 1.00)Age

.291.18 (0.87 to 1.61).091.30 (0.96 to 1.74)Female

N/AN/Aa.440.84 (0.53 to 1.32)Every-day smoker

.040.68 (0.47 to 0.98)<.0010.57 (0.41 to 0.78)Hypertension

.290.79 (0.52 to 1.22).020.61 (0.41 to 0.91)Diabetes mellitus

N/AN/A.740.91 (0.51 to 1.62)Cancer

N/AN/A.460.80 (0.45 to 1.43)Cardiovascular disease

N/AN/A.950.98 (0.50 to 1.91)Chronic lung disease

.010.35 (0.11 to 1.20).040.28 (0.08 to 0.91)Chronic kidney disease

.030.40 (0.17 to 0.93).020.37 (0.16 to 0.86)Chronic liver disease

N/AN/A.841.03 (0.77 to 1.39)Cough

N/AN/A.841.03 (0.77 to 1.39)Fever

N/AN/A.431.17 (0.79 to 1.74)Dyspnea

N/AN/A.361.04 (0.96 to 1.12)White blood cells, 1000/µL

.031.02 (1.00 to 1.03).0011.02 (1.01 to 1.04)Lymphocyte, %

N/AN/A.401.14 (0.84 to 1.53)C-reactive protein >0.5 mg/dL

N/AN/A.360.82 (0.54 to 1.25)Procalcitonin >0.05 ng/mL

Oxygen supplementation

<.0011.06 (1.04 to 1.08)<.0011.08 (1.07 to 1.10)Age

.730.91 (0.53 to 1.56).030.67 (0.47 to 0.96)Female

.360.63 (0.24 to 1.69).020.45 (0.23 to 0.90)Every-day smoker

.021.90 (1.12 to 3.24)<.0013.85 (2.67 to 5.55)Hypertension

.0082.23 (1.24 to 4.01)<.0014.91 (3.23 to 7.46)Diabetes mellitus

N/AN/A.980.99 (0.50 to 1.98)Cancer

.641.24 (0.51 to 3.00)<.0012.86 (1.58 to 5.17)Cardiovascular disease

.771.17 (0.42 to 3.27).0082.50 (1.27 to 4.91)Chronic lung disease

.282.44 (0.48 to 12.48).043.18 (1.05 to 9.59)Chronic kidney disease

N/AN/AN/AN/AChronic liver disease

.401.26 (0.74 to 2.14)<.0012.35 (1.61 to 3.44)Cough

.111.55 (0.91 to 2.62)<.0013.13 (2.13 to 4.58)Fever

<.0018.93 (4.85 to 16.43)<.00111.04 (7.20 to 16.94)Dyspnea

.380.94 (0.82 to 1.08)<.0011.17 (1.07 to 1.27)White blood cells, 1000 cells/µL

.110.98 (0.95 to 1.01)<.0010.92 (0.91 to 0.94)Lymphocyte, %

<.0013.04 (1.68 to 5.48)<.0019.52 (6.05 to 14.98)C-reactive protein >0.5 mg/dL

<.0013.50 (1.87 to 6.57)<.00112.01 (7.59 to 19.01)Procalcitonin >0.05 ng/mL

Development of acute respiratory distress syndrome

<.0011.07 (1.03 to 1.12)<.0011.08 (1.06 to 1.11)Age

.260.56 (0.21 to 1.52).0050.44 (0.25 to 0.78)Female

N/AN/A.490.72 (0.28 to 1.85)Every-day smoker

.441.46 (0.56 to 3.81)<.0014.29 (2.47 to 7.46)Hypertension
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P valueAdjusted odds ratio (95% CI)P valueUnadjusted odds ratio (95% CI)Clinical outcomes

.650.80 (0.31 to 2.10)<.0014.40 (2.50 to –7.75)Diabetes mellitus

N/AN/A.291.63 (0.66 to 3.99)Cancer

.571.42 (0.42 to 4.81)<.0013.85 (1.85 to 8.00)Cardiovascular disease

07700.81 (0.20 to 3.31).072.34 (0.93 to 5.84)Chronic lung disease

N/AN/A.322.17 (0.47 to 10.04)Chronic kidney disease

N/AN/A.931.07 (0.24 to 4.66)Chronic liver disease

.240.52 (0.18 to 1.53).0062.36 (1.29 to 4.33)Cough

4.1111.55 (0.55 to 4.40)<.0015.18 (2.58 to 10.41)Fever

<.00112.76 (4.48 to 36.36)<.00118.13 (9.77 to 33.66)Dyspnea

.661.04 (0.87 to 1.25)<.0011.28 (1.15 to 1.42)White blood cells, 1000 cells/µL

.090.96 (0.91 to 1.01)<.0010.87 (0.84 to 0.90)Lymphocyte, %

.262.24 (0.56 to 8.98)<.00114.78 (5.83 to 37.44)C-reactive protein >0.5 mg/dL

<.0018.07 (2.96 to 22.00)<.00124.84 (13.23 to 46.63)Procalcitonin >0.05 ng/mL

aN/A: not applicable.

Comparison Between Different Prediction Models
The sensitivity, specificity, PPV, NPV, and accuracy of each
model are summarized in Multimedia Appendix 1, Table S5.
A comparison of the performance of the different prediction
models for each clinical outcome is shown in Figure 3. We
found no significant difference in the performance of the 3
prediction models in predicting hospital LOS ≤2 weeks
(Multimedia Appendix 1, Figure S3). Model 3 showed an

AUROC of 0.704 (95% CI 0.646-0.762) in predicting oxygen
supplementation, which was significantly superior to models 1
and 2 (P<.001 and P=.02, respectively; Multimedia Appendix
1, Figure S4). Model 2 showed better performance in predicting
ARDS than model 1 (P=.01) (Multimedia Appendix 1, Figure
S5). Model 3 showed an AUROC of 0.890 (95% CI
0.853-0.928) for ARDS, which was significantly superior to
model 1 (P=.004).

Figure 3. Externally validated performance of the artificial intelligence model with chest radiography score, logistic regression model with clinical
information, and the combined prediction model. (A) Hospital LOS ≤2 weeks. (B) Oxygen supplementation. (C) Development of ARDS. ARDS: acute
respiratory distress syndrome; AUC: area under the curve; CXR: chest radiography; LOS: length of stay.

Calibration of the Prediction Model
The calibration of models 1 and 3 in the internal and external
test data sets is described in Table 4 and Multimedia Appendix
1, Figures S6 and S7. The Spiegelhalter z test showed good

calibration of model 3 for hospital LOS ≤2 weeks, oxygen
supplementation, and ARDS in the internal test set. Model 3
showed appropriate calibration only for ARDS in the external
test data set (P=.86).
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Table 4. Calibration of the prediction probability of the deep learning–based model using internal and external test data sets. P values were calculated
with the Spiegelhalter z test; significant values indicate inappropriate calibration. Probability 1 and probability 2 were the prediction values of the deep
learning–based model without and with symptom probability, respectively.

P value (Spiegelhalter z test)Data set and outcome

Internal test set (n=75)

Hospital length of stay ≤2 weeks

.72Probability 1

.57Probability 2

Oxygen supplementation

.91Probability 1

.80Probability 2

Development of acute respiratory distress syndrome

.002Probability 1

.81Probability 2

External test set (n=467)

Hospital length of stay ≤2 weeks

<.001Probability 1

<.001Probability 2

Oxygen supplementation

<.001Probability 1

<.001Probability 2

Development of acute respiratory distress syndrome

.08Probability 1

.86Probability 2

Discussion

Principal Findings
We developed and externally validated an AI model to predict
prespecified clinical outcomes based on DL using CXR. The
performance of the AI model using CXR and the logistic
regression model using clinical information were suboptimal
for predicting hospital LOS ≤2 weeks or oxygen
supplementation; there were no differences between the 2
models. The combined model, with both CXR score and clinical
information, performed better in predicting oxygen
supplementation. The AI prediction model for ARDS using the
CXR score performed acceptably but was inferior to the model
using clinical information. The combined model did not perform
better in predicting ARDS than clinical information alone. CXR
score calibration was appropriate for ARDS in the external test
data set but not for hospital LOS ≤2 weeks or oxygen
supplementation, suggesting that the CXR score may be
important in identifying COVID-19 patients at high risk of
progression to severe illness or ARDS. However, it is desirable
to refrain from making prognoses for patients with COVID-19
based on CXR alone, considering that the predictive
performance of the AI model using CXR was inferior to that of
the model combining CXR score and clinical information.

CXR images in patients with COVID-19 pneumonia show
various features, including diffuse ground-glass opacities, patchy

reticular or nodular opacities, and consolidation [20]. The
radiological features of CXR are related to the COVID-19
prognosis [21,22]. The CXR severity scoring system, which is
based on radiological interpretation, is significantly associated
with the prognosis of patients with COVID-19 [23]. To automate
the quantification of the extent and opacity of lung lesions and
the consequent assessment of radiological severity, DL models
using CXR have been evaluated in COVID-19 pneumonia [24].
Recently, a DL model showed acceptable performance for
predicting COVID-19 pneumonia based on CXR [12]. In our
study, the CXR score derived from an AI predictive model
showed superior performance for oxygen demand and
comparable performance for ARDS compared to clinical
information. With the application of DL techniques, CXR may
need to be reconsidered as a beneficial tool for making
COVID-19 pneumonia prognoses.

Hospital LOS is a clinical indicator of disease severity and time
to recovery in patients with COVID-19. Prolonged hospital
LOS has been associated with specific demographic
characteristics and underlying comorbidities [25]. In COVID-19
patients with pneumonic infiltration in CXR, the time to negative
conversion is prolonged [26]. However, none of our prediction
models using CXR or clinical information were suitable for
predicting whether a patient could be discharged within 2 weeks.
This is consistent with a previous study reporting that
radiological progression in chest CT and hospital LOS were not
correlated [27]. Therefore, evidence to support an AI model
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using only baseline CXR to predict early recovery from
COVID-19 or hospital LOS ≤2 weeks is insufficient.

Severe illness in COVID-19 is defined as a condition with SpO2

≤94% in room air, including supplemental oxygen demand [28].
Progression to severe COVID-19 increases mortality risk [29].
Early prognosis and intervention may improve mortality risk
in patients with COVID-19 [30,31]. Early administration of
dexamethasone is associated with less progression to severe
COVID-19 [32]. Therefore, many studies have attempted to
predict severe COVID-19 using all available medical
information, including CXR, but previous prediction models
are not sufficiently validated [3]. Our prognostic model was
externally validated to verify its performance in predicting
oxygen supplementation need in patients with COVID-19. The
AI prediction models using CXR and logistic regression with
clinical information were suboptimal for predicting oxygen
supplementation in patients with COVID-19. However, the
predictive performance for oxygen supplementation improved
to an acceptable level after clinical information was combined
with the CXR score. Our results suggest that clinical and
radiological information are complementary in predicting the
need for oxygen supplementation.

Because of high mortality and morbidity, predicting
COVID-19–associated ARDS is important [33]. CXR and
clinical information, when applied to a time-dependent DL
model to predict MV use, showed good predictive performance
[12]. Recently, the Berlin definition of ARDS was expanded to
include patients treated with HFNC [34]. Therefore, our study
operationally defined ARDS as an event in which HFNC, MV,
or ECMO were administered. Our AI model using CXR score
showed acceptable performance; the combined model using

CXR score and clinical information showed excellent
performance in predicting the use of HFNC, MV, and ECMO.
Further clinical trials are needed to ascertain whether early
detection of patients at high ARDS risk can improve outcomes
through early treatment for severe COVID-19.

Limitations
Our study had some limitations. First, the interval between
symptom onset and CXR imaging varied. The natural course
of COVID-19 suggests that radiological abnormalities would
have been ground-glass opacities at the beginning, progressing
to consolidative lesions. Therefore, if the interval between
symptom onset and CXR imaging was too short, our AI model
might have underestimated the severity of prognoses among
patients with COVID-19. Second, the performance of our
prediction model may have changed according to vaccination
history. As the vaccination rate increases, the progression to
severe illness or ARDS decreases. Therefore, the PPV of our
AI model may decrease in vaccinated patients. Third, most of
the included patients were diagnosed with COVID-19 before
results on the efficacy of dexamethasone or antiviral agents
were reported [35,36]. Therefore, it is necessary to validate the
performance of the AI prediction model under recently
introduced standard treatments.

Conclusions
A prediction model combining CXR score and clinical
information was externally validated as having acceptable
performance in predicting progression to severe illness and
excellent performance in predicting the use of HFNC or MV in
patients with COVID-19. We hypothesize that making prognoses
with AI models using CXR could be applied for patients with
COVID-19 in different settings.
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