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Abstract

IMPORTANCE Dual-energy chest radiography exhibits better sensitivity than single-energy chest
radiography, partly due to its ability to remove overlying anatomical structures.

OBJECTIVES To develop and validate a deep learning–based synthetic bone-suppressed (DLBS)
nodule-detection algorithm for pulmonary nodule detection on chest radiographs.

DESIGN, SETTING, AND PARTICIPANTS This decision analytical modeling study used data from 3
centers between November 2015 and July 2019 from 1449 patients. The DLBS nodule-detection
algorithm was trained using single-center data (institute 1) of 998 chest radiographs. The DLBS
algorithm was validated using 2 external data sets (institute 2, 246 patients; and institute 3, 205
patients). Statistical analysis was performed from March to December 2021.

EXPOSURES DLBS nodule-detection algorithm.

MAIN OUTCOMES AND MEASURES The nodule-detection performance of DLBS model was
compared with the convolution neural network nodule-detection algorithm (original model). Reader
performance testing was conducted by 3 thoracic radiologists assisted by the DLBS algorithm or not.
Sensitivity and false-positive markings per image (FPPI) were compared.

RESULTS Training data consisted of 998 patients (539 men [54.0%]; mean [SD] age, 54.2 [9.82]
years), and 2 external validation data sets consisted of 246 patients (133 men [54.1%]; mean [SD]
age, 55.3 [8.7] years) and 205 patients (105 men [51.2%]; mean [SD] age, 51.8 [9.1] years). Using the
external validation data set of institute 2, the bone-suppressed model showed higher sensitivity
compared with that of the original model for nodule detection (91.5% [109 of 119] vs 79.8% [95 of
119]; P < .001). The overall mean of FPPI with the bone-suppressed model was reduced compared
with the original model (0.07 [17 of 246] vs 0.09 [23 of 246]; P < .001). For the observer
performance testing with the data of institute 3, the mean sensitivity of 3 radiologists was 77.5%
(95% [CI], 69.9%-85.2%), whereas that of radiologists assisted by DLBS modeling was 92.1% (95%
CI, 86.3%-97.3%; P < .001). The 3 radiologists had a reduced number of FPPI when assisted by the
DLBS model (0.071 [95% CI, 0.041-0.111] vs 0.151 [95% CI, 0.111-0.210]; P < .001).

CONCLUSIONS AND RELEVANCE This decision analytical modeling study found that the DLBS
model was more sensitive to detecting pulmonary nodules on chest radiographs compared with the
original model. These findings suggest that the DLBS model could be beneficial to radiologists in the
detection of lung nodules in chest radiographs without need of the specialized equipment or increase
of radiation dose.
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Introduction

Chest radiography is the most commonly performed diagnostic imaging procedure, which is used for
screening, diagnostic workups, and monitoring of various thoracic diseases.1,2 However, many prior
studies have indicated the limitations of chest radiography for lung cancer screening with a low
detection rate, especially for small pulmonary nodules.3,4 Therefore, accurate interpretation of chest
radiographs requires a great deal of experience and medical knowledge on the part of the radiologist.
In addition, chest radiography is subject to substantial interreader variability and suboptimal
sensitivity for important clinical findings.

Although chest radiography is clinically useful, efficient, and cost-effective, this examination
consists of complex 3-dimensional anatomic information condensed in a 2-dimensional projection.
Therefore, small nodules may be shielded by the ribs and scapula and thus missed during
interpretation of the x-ray. To solve this issue, dual-energy subtraction techniques were developed
to distinguish bone from soft tissue. Dual-energy chest radiography (DECR) exhibits better sensitivity
than single-energy chest radiography, partly due to its ability to remove overlying anatomical
structures. DECR has been demonstrated to improve the ability to detect and characterize lung
nodules5-8; however, disadvantages of DECR include the requirement of specialized equipment and
a small potential increase in radiation dose.

Deep learning technology has the potential to automatically detect abnormalities or assist
radiologists in reading chest radiographs. Several artificial intelligence algorithms have been tested
in an effort to reduce radiologist errors and increase the detection rate of pulmonary nodules on
chest radiographs.9-12 In addition, several studies have focused on bone-suppression techniques
using artificial intelligence.13-15

A convolutional neural network (CNN) is an artificial intelligence technique that has been widely
applied to date in the medical field and can perform various tasks such as image classification,
segmentation, and regression with high accuracy. We developed a deep learning–based synthetic
bone-suppressed (DLBS) pulmonary nodule-detection algorithm by modifying a conventional U-net
to take advantage of the high frequency-dominant information that propagates from the encoding
part to the decoding part. The presented network is different from conventional deep learning–
based image processing, which has been demonstrated to improve image characteristics, such as
noise and resolution. The main idea of the developed model is that when a feature is propagated
from encoding to decoding, only the high frequency components are extracted and propagated. The
proposed model also dramatically reduces the number of parameters by adding features of the
encoding that propagate to the decoding part instead of the feature concatenation of U-net.16

The purpose of this study was to develop and validate a DLBS nodule-detection algorithm for
the detection of pulmonary nodules on chest radiographs and to compare detection performance
with that of thoracic radiologists.

Methods

For this decision analytical modeling study, ethics review and institutional review board approval
were obtained from all participating institutions (Severance Hospital, Pusan National University
Hospital, and Dongsan Medical Center) and the requirement for informed consent was waived
because of this retrospective study design. The posterior-anterior projection chest radiographs
obtained from 3 tertiary hospitals were collected for the development and validation of a DLBS
nodule-detection algorithm. All chest radiographs were deidentified. The candidate radiographs
were sorted by inclusion and exclusion criteria, regardless of the type of acquisition system
(computed radiography or digital radiography) or the manufacturer of the radiography device. This
study followed the relevant portions of the Consolidated Health Economic Evaluation Reporting
Standards (CHEERS) reporting guideline.
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Data Sets
For algorithm development, we retrospectively collected 1004 chest radiographs obtained between
November 2015 and December 2019 from a single center (institution 1). Normal radiographs were
included from healthy adults (aged at least 19 years) who underwent health screening chest
radiographs and, if a normal chest computed tomography (CT) scan was also performed within 14
days of the radiograph, it was collected.

Chest radiographs with lung nodules were collected based on the following inclusion criteria: (1)
adult patients (aged at least 19 years) who underwent biopsy or surgery for 1 or more CT- and
pathology-proven lung nodules, regardless of pathologic type (malignant neoplasm or benign) and
component (solid, partly solid, or ground glass); (2) at least 1 nodule needed to be pathologically
proven; (3) the number of lesions per radiograph was 3 or fewer; (4) all nodules on the radiograph
measured between 1 to 3 cm in diameter on CT imaging (the short-axis length on any CT plane was
used to avoid overestimation); and (5) the nodules were not in a major airway or the mediastinum.
Chest radiographs containing abnormal findings other than lung nodules, such as consolidation,
atelectasis or pleural effusion, were not excluded. Any radiographs considered unsuitable for clinical
interpretation were excluded. All chest radiographs were carefully reviewed by 2 experienced
thoracic radiologists based on consensus.

By using the aforementioned criteria, the chest radiography data were randomly assigned into 1
of the following 3 data sets: a training data set that consisted of 800 chest radiographs (including
335 normal and 465 nodule chest radiographs), a tuning data set (composed of 98 chest radiographs
consisting of 48 normal and 50 nodule chest radiographs), and an internal validation data set
(composed of 100 chest radiographs consisting of 40 normal and 60 nodule chest radiographs) to
validate the detection performance of the trained network (eFigure 1 in the Supplement). Two
additional independent data sets were prepared for external validation from 2 different hospitals
(institute 2, 246 patients with 131 normal and 115 nodule chest radiographs; institute 3, 205 patients
with 113 normal and 92 nodule chest radiographs) using the same inclusion and exclusion criteria
(eFigure 1 in the Supplement). Detailed demographic information is provided in Table 1.

Labeling and Annotation (Standard Reference)
In the developmental data sets, chest radiographs were labeled as either normal or nodule chest
radiographs (image-level labeling), and the locations of nodules on the nodule chest radiographs
were annotated. Two thoracic radiologists (with more than 5 years of experience) reviewed each CT
scan as a standard of reference and marked the location of true nodule(s) as a region of interest (ROI)
in consensus. Chest CT scans performed within 2 weeks were used as references. For the 2 external
validation data sets, 2 thoracic radiologists also labeled the chest radiographs and annotated the
location of the nodules on chest radiographs on the basis of the chest CT scans performed within
2 weeks.

Development of the DLBS Model
The developed deep learning–based model consisted of 2 subsystems responsible for (1) generating
bone- and soft tissue–only images from single-energy chest radiography and (2) detecting suspicious
pulmonary nodules, respectively.

For the first step, we previously developed a deep convolutional neural network (DCNN)-based
synthetic bone-suppressed algorithm based on U-net,16 which is a deep convolutional neural
network architecture with multiresolution analysis performed by repeated convolution and feature-
dimension changes. The main idea of the developed model was that, when a feature is propagated
from encoding to decoding, only the high-frequency components are extracted and propagated. The
model selectively projected the bone- and soft tissue–only chest radiography images from a single
energy chest radiography image. The bone-suppressed chest radiographs were automatically
synthesized through a DCNN-based encoder-decoder model. A detailed description of the
development of the deep learning–based algorithm can be found in a previous study.16
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For the second step, we developed a pulmonary nodule–detection algorithm based on a
convolution neural network (CNN) algorithm known as “you only look once” (YOLO).17 The developed
algorithm customized a YOLO version 3 CNN algorithm for the detection of pulmonary nodules. In
general, the network consists of 2 major components: (1) a feature extractor that screens nodule
presence among the input data, and (2) a bounding box generator that determines nodule location.
The DLBS model was trained to detect lung nodules using the training data set involving synthetic
bone-suppressed images and the CNN model was separately trained to detect lung nodules using
original chest radiographs (Figure 1; and eFigure 2 in the Supplement). To maximize the nodule-
detection performance, an ensemble model was developed through 5-fold cross-validation, and a
hard-negative sampling method was used (ensemble model).

The DLBS model used automatic synthetic bone–suppression images to detect pulmonary
nodules from original chest radiographs, whereas the CNN model detected pulmonary nodules on
original chest radiographs.

Evaluation of the DLBS and CNN Models
For internal (institute 1) and external validation (institutes 2 and 3), the nodule-detection
performances were evaluated on a per-nodule basis. First, we evaluated the performance of the
DLBS nodule-detection algorithm (DLBS model) compared with that of the CNN nodule-detection
algorithm (CNN model) using internal (institute 1) and external validation (institute 2 and institute 3)
data sets (Figure 2). We compared the nodule-detection performance of the CNN nodule-
detection algorithm (CNN model) trained with the original chest radiographs and their corresponding
bone-suppressed chest radiographs (DLBS model), respectively.

Table 1. Baseline Characteristics of Data Sets

Variable

No. (%)

Institute 1 (n = 998) Institute 2 (n = 246) Institute 3 (n = 205)
Sex

Male 539 (54.0) 133 (54.1) 105 (51.2)

Female 459 (46.0) 113 (45.9) 100 (48.8)

Age, mean (SD), y 54.2 (9.82) 55.3 (8.74) 51.8 (9.13)

Normal radiographs 423 (42.4) 131 (53.2) 113 (54.9)

Nodule chest radiographs 575 (57.6) 115 (46.8) 92 (44.8)

Total No. of nodules 598 119 92

Nodule size on CT 23.8 (8.8) 24.4 (7.4) 25.1 (8.7)

mean (SD), mm

1.0 cm ≤ × < 2.0 cm 198 (33.1) 49 (41.2) 28 (30.4)

2.0 cm ≤ × < 3.0 cm 400 (66.9) 70 (58.8) 64 (69.6)

Location

Right

Upper lobe 160 (26.7) 30 (25.2) 25 (27.1)

Middle lobe 36 (6.0) 11 (9.2) 10 (10.9)

Lower lobe 131 (21.9) 24 (20.2) 22 (24.0)

Left

Upper lobe 142 (23.7) 29 (24.4) 25 (27.1)

Lower lobe 129 (21.7) 25 (21.0) 10 (10.9)

Internal characteristics of CT findings

Subsolid nodule 32 (5.4) 5 (4.2) 3 (3.3)

Solid nodule 566 (94.6) 114 (95.8) 89 (96.7)

Pathology

Benign 65 (10.9) 18 (15.1) 10 (10.9)

Malignant (primary) 483 (80.7) 95 (79.8) 74 (80.4)

Malignant (metastatic) 50 (8.4) 6 (5.1) 8 (8.7)
Abbreviation: CT, computed tomography.
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Second, an observer performance test was conducted by using the data sets from institute 3 to
compare the nodule-detection performance of the DLBS model with that of the physicians. During
test 1, 3 thoracic radiologists (with more than 5 years of experience) independently reviewed each
chest radiograph to discriminate normal chest radiographs from nodule chest radiographs and
localized lung nodules (nodule detection) without using the DLBS model. The readers independently
analyzed chest radiographs without clinical information, prior radiographs, or CT findings, then
marked up to 3 regions with individual ROIs that were suspicious for nodules. The readers knew that

Figure 1. Schematic of the Developed Deep Learning–Based Model

Original chest radiograph

DLBS image generator

Detection performance
comparison

Baseline model:
YOLO v3. (17)

Bone-suppressed chest radiograph

Subsystem A:
DLBS image
generator

Subsystem B:
DLBS nodule

detection

Pulmonary nodule-detector
for bone-suppressed chest radiograph

Pulmonary nodule-detector for
original chest radiograph

The model consisted of 2 subsystems responsible for
(1) generating bone-suppressed images from single-
energy chest radiography and (2) detecting suspicious
pulmonary nodules. DLBS indicates deep learning–
based synthetic bone-suppressed; YOLO, you only
look once.

Figure 2. Illustration of Representative Case of Nodule Detection Performance of Deep Learning–Based Synthetic Bone-Suppressed (DLBS)
Nodule-Detection Algorithm

Nodule visible on chest radiographA Lung adenocarcinoma in the right lower lobe B DLBS model correctly detected true noduleB

Chest radiograph images of a man aged 59 years with primary adenocarcinoma. A, The
nodule was visible on the chest radiograph (arrow). B, Chest CT examination revealed a
27-mm lung adenocarcinoma in the right lower lobe (arrow). C, On bone-suppressed

chest radiographs created using the DLBS model, the algorithm correctly detected the
true nodule (white box: ground truth, red box: DLBS).
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each image can have up to 3 nodules (0-3), but they did not know which radiographs were normal or
had nodules.

During test 2, each reader reanalyzed the same images from test 1 assisted with the DLBS model
after washout period of 1 week from test 1. The readers reanalyzed chest radiographs assisted with
the detection results from the DLBS model at the same time. Each reviewer was then asked to mark
up to 3 regions with individual ROIs if any nodule was suspected in the image.

Statistical Analysis
The data result was presented in a binary format in which the presence and location of nodule is
displayed in a bounding box. Sensitivity was defined as the number of true-positive markings divided
by the number of ground-truth ROIs and compared using logistic regression. A projected box was
considered a true positive if the box covered more than 50% of the area of the ground truth box.
False-positive markings per image (FPPI) were defined as the total number of false-positive markings
divided by the total number of radiographs and compared with Poisson regression. The generalized
estimating equation was applied to account for clustering effects caused by the multicenter and/or
multireader design.

P < .05 was considered statistically significant. Statistical analyses were performed from March
to December 2021 using the SAS version 9.4 software program (SAS Institute) and R version 4.1.13
statistical package (R Project for Statistical Computing).

Results

Study Participants
Training data consisted of 998 patients (539 men [54.0%]; mean [SD] age, 54.2 [9.82] years) from
institute I. There were 598 nodules in the 575 nodule chest radiographs. The mean (SD) nodule size
measured from CT images was 23.8 (8.8) mm. A total of 80.7% (483 of 598) nodules were primary
lung cancers, 8.4% (50 of 598) were metastases, and 10.9% (65 of 598) were benign. Two external
validation data sets consisted of 246 patients (133 men [54.1%]; mean [SD] age, 55.3 [8.74] years)
and 205 patients (105 men [51.2%]; mean [SD] age, 51.8 [9.13] years) were used to validate DLBS
nodule-detection performance, respectively. There were 119 nodules with a mean (SD) size of 24.4
(7.4) mm from institute 2 and 92 nodules with a mean (SD) size of 25.1 (8.7) mm from institute 3. The
demographic characteristics of participants for the nodule data sets are summarized in Table 1.

Nodule Detection Performance of the DLBS and CNN Models
For the internal validation data set of 100 chest radiographs (40 normal and 60 nodule chest
radiographs), our original model (the CNN algorithm) showed a sensitivity of 86.7% (52 of 60) for
nodule-detection performance. When the bone-suppressed model (the DLBS model) independently
analyzed chest radiographs, the sensitivity was improved compared with the original model (96.7%
[58 of 60] vs 86.7% [52 of 60]; P = .008) (eFigure 3 in the Supplement). The rates of FPPI with the
original model was 0.06 (6 of 100) and the bone-suppressed model was 0.05 (5 of 100). The overall
mean of FPPI with the original model was not significantly different compared with that of FPPI with
the bone-suppressed model (P = .71) (Table 2).

Using external validation data of institute 2 and institute 3, the bone-suppressed model showed
a higher sensitivity compared with that of the original model for nodule detection (institute 2: 91.5%
[109 of 119] vs 79.8% [95 of 119]; P < .001; and institute 3: 92.4% [85 of 92] vs 80.4% [74 of 92];
P < .001). The overall mean of FPPI with the bone-suppressed model was reduced compared with
that with the original model (institute 2: 0.07 [17 of 246] vs 0.09 [23 of 246]; P < .001; and institute
3: 0.09 [19 of 205] vs 0.16 [32 of 205], P < .001) (Table 2).
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Reader Performance Test With or Without the DLBS Model
For the observer performance test using institute 3, the 3 radiologists had improved sensitivity using
the DLBS model (observer 1: 92.4% [85 of 92] vs 80.4% [74 of 92]; P = .001; observer 2: 91.4% [85
of 92] vs 76.1% [70 of 92]; P < .001; and observer 3: 91.4% [85 of 92] vs 77.2% [71 of 92]; P < .001).
The mean sensitivity of the 3 radiologists by themselves was 77.5% (95% CI, 69.9%-85.2%), whereas
that of the radiologists when assisted by the DLBS model was 92.1% (95% CI, 86.3%-97.3%;
P < .001) (Table 3).

The 3 radiologists achieved a reduced number of FPPI when they were assisted by the DLBS
model (observer 1: 0.059 [12 of 205] vs 0.143 [30 of 205]; P < .001; observer 2: 0.087 [18 of 205] vs
0.165 [35 of 205]; P = .001; and observer 3: 0.063 [13 of 205] vs 0.154 [33 of 205]; P < .001)
(Table 3). The 3 radiologists had a reduced number of FPPI when assisted by the DLBS model (0.071
[95% CI, 0.041-0.111] vs 0.151 [95% CI, 0.111-0.210]; P < .001) (Table 3).

Discussion

This study was designed to develop and validate whether a DLBS model can additionally improve the
detection of pulmonary nodules on chest radiographs and enhance the diagnostic performance of
thoracic radiologists. The main finding was that our bone-suppressed model (the DLBS model) could
more accurately detect pulmonary nodules on chest radiographs compared with the original model

Table 2. Nodule-Detection Performance of Bone-Suppressed DCNN Model in the Internal and External
Validation Tests

Variables Original model DLBS model P value
Institute 1 (n = 100)

Sensitivity, % (No./total No.) 86.7 (52/60) 96.7 (58/60)
.008

95% CI 78.1-95.3 92.1-100

FPPI 0.06 (6/100) 0.05 (5/100)
.71

95% CI 0.02-0.15 0.02-0.12

Institute 2 (n = 246)

Sensitivity, % (No./total No.) 79.8 (95/119) 91.5 (109/119)
<.001

95% CI 72.7–87.1 87.6-97.2

FPPI 0.09 (23/246) 0.07 (17/246)
<.001

95% CI 0.06-0.14 0.04-0.11

Institute 3 (n = 205)

Sensitivity, % (No./total No.) 80.4 (74/92) 92.4 (85/92)
<.001

95% CI 74.1-90.3 87.0-97.8

FPPI 0.16 (32/205) 0.09 (19/205)
<.001

95% CI 0.101-0.215 0.05-0.15

Abbreviations: DCNN, deep convolutional neural
network; DLBS, deep learning–based synthetic bone-
suppressed; FPPI, false-positive findings per image.

Table 3. Nodule-Detection Performance of Observer With or Without Bone-Suppressed DCNN Model

Observer

Sensitivity, % (No./total No.)

P value

FPPI (No./total No.)

P valueObserver only Observer + DLBS Observer only Observer + DLBS
Observer 1 80.4 (74/92) 92.4 (85/92)

.001
0.143 (30/205) 0.059 (12/205)

<.001
95% CI 72.3-88.5 87.1-97.8 0.098-0.208 0.034-0.101

Observer 2 76.1 (70/92) 91.4 (85/92)
<.001

0.165 (35/205) 0.087 (18/205)
.001

95% CI 66.4-83.8 85.7-97.1 0.116-0.235 0.051-0.148

Observer 3 77.2 (71/92) 91.4 (85/92)
<.001

0.154 (33/205) 0.063 (13/205)
<.001

95% CI 68.6-85.8 85.7-97.1 0.109-0.218 0.051-0.148

Mean 77.5 92.1
<.001

0.151 0.071
<.001

95% CI 69.9-85.2 86.3-97.3 0.111-0.210 0.041-0.111

Abbreviations: DCNN, deep convolutional neural network; DLBS, deep learning–based synthetic bone-suppressed; FPPI, false-positive findings per image.
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(the CNN algorithm). In addition, radiologists experienced improved nodule-detection performance
when assisted by the DLBS model.

Chest radiographs are widely used for the detection of a wide range of lung abnormalities,
including pulmonary nodules, but pulmonary nodules can be difficult to detect due to overlap with
normal anatomic structures, such as the ribs and clavicle. Use of dual-energy soft-tissue images can
improve the detection of focal soft-tissue opacities, such as lung nodules, that may be partly
obscured by overlying bony structures.5-8 Previous studies have reported that dual-energy
subtraction radiographs improved the detection of lung nodules and masses in daily clinical
practice.6,7,18 A previous study found that the observer’s performance was further improved by the
use of dual-energy soft tissue images (area under the receiver-operating characteristic curve [AUC]
from 0.867 to 0.916), and this improvement was statistically significant for the 6 experienced
observers (AUC from 0.894 to 0.945).19 Despite the advantages, a very limited number of hospitals
use dual-energy subtraction radiography because specialized equipment for obtaining dual-energy
x-ray exposures is required. In addition, the radiation dose can be increased.

We assumed that our DLBS algorithm could generate lung parenchymal images while
subtracting the overlying bony structures from chest radiograph images and therefore efficiently
detect lung nodules from lung parenchymal images as the overlying bony structures had already
been subtracted. Currently, several deep learning–based algorithms have been tested in an effort to
improve nodule-detection performance and reduce radiologist errors on chest radiographs.11,12,20-23

A previous study found that the sensitivity of nodule-detection performances of deep learning–
based algorithms ranged from 69.9% to 82.0% with FPPI ranging 0.02 to 0.34 on 4 external
validation data sets. In addition, all physicians showed improved nodule-detection performances
when assisted by this algorithm.11

When we tested the DLBS algorithm, the bone-suppressed model (DLBS model) showed higher
sensitivity compared with that of the original model (CNN algorithm) for nodule detection on chest
radiographs in external validation data sets (91.5% [109 of 119] vs 79.8% [95 of 119]; P < .001; and
92.4% [85 of 92] vs 80.4% [74 of 92]; P < .001). In addition, 3 radiologists showed improved
sensitivity of nodule detection when assisted by DLBS algorithm (92.1% [95% CI, 86.3%–97.3%] vs
77.5% [95% CI, 69.9%-85.2%]; P < .001), and their FPPI decreased from 0.151 to 0.071. A recent
study found that the use of generative adversarial networks (GAN)-based bone suppression model
with chest radiographs showed comparable nodule detection performance to dual-energy technique
in detecting pulmonary nodules on chest radiographs (area under the alternative free-response ROC
[AUAFROC] 0.958 vs 0.976; P = .35).23 This result suggested that GAN-based bone suppression
model can improve pulmonary nodule detection performance on chest radiographs. Although this
study used GAN-based model to generate automatic bone-suppressed chest radiographs and we
used DCNN-based encoder-decoder model, we think the study results showed similar trends. It is
difficult to directly compare the lung nodule detection performance of the DLBS model and other
commercialized models. However, if we refer to the result of a previous study, the sensitivity of the
commercialized nodule detection algorithm (Lunit) was 86.2% (95% CI, 77.8%-94.6%) using a
subset of 577 images from 5485 participants, which is similar to the performance of our CNN
model.22 Therefore, our DLBS model could be beneficial to radiologists in the detection of lung
nodules in chest radiographs.

Limitations
This study has some limitations. First, since the algorithm was validated using retrospective data sets,
the possibility of selection bias cannot be excluded. We tried to achieve clinical importance by including
3 different data sets. Second, the high ratio of abnormal to normal radiographs differs from that of clini-
cal practice. As disease prevalence can differ vastly between study populations, our results may not
apply in other clinical settings. Third, other lung diseases, such as pneumonia, interstitial lung disease,
and pleural effusion, were not considered. Further research is warranted to determine the applicability
of this synthetic bone-suppressed model in a prospective multi-institutional study.
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Conclusions

This decision analytical modeling study found that the DLBS model was associated with improved
sensitivity for nodule detection compared with the original model on chest radiographs. In addition,
these findings suggest that radiologists can improve their nodule-detection performance when
assisted by a DLBS model.
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SUPPLEMENT.
eFigure 1. Flowchart of Radiograph Selection
eFigure 2. The Detailed Architecture of Deep Learning–Based Synthetic Bone-Suppressed Image Generator
eFigure 3. Illustration of Representative Case of Nodule Detection Performance Between DLBS Model and CNN
Model
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