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Abstract: (1) Background: Differential diagnosis using immunohistochemistry (IHC) panels is a
crucial step in the pathological diagnosis of hematolymphoid neoplasms. In this study, we evalu-
ated the prediction accuracy of the ImmunoGenius software using nationwide data to validate its
clinical utility. (2) Methods: We collected pathologically confirmed lymphoid neoplasms and their
corresponding IHC results from 25 major university hospitals in Korea between 2015 and 2016. We
tested ImmunoGenius using these real IHC panel data and compared the precision hit rate with
previously reported diagnoses. (3) Results: We enrolled 3052 cases of lymphoid neoplasms with an
average of 8.3 IHC results. The precision hit rate was 84.5% for these cases, whereas it was 95.0%
for 984 in-house cases. (4) Discussion: ImmunoGenius showed excellent results in most B-cell lym-
phomas and generally showed equivalent performance in T-cell lymphomas. The primary reasons
for inaccurate precision were atypical IHC profiles of certain cases, lack of disease-specific markers,
and overlapping IHC profiles of similar diseases. We verified that the machine-learning algorithm
could be applied for diagnosis precision with a generally acceptable hit rate in a nationwide dataset.
Clinical and histological features should also be taken into account for the proper use of this system
in the decision-making process.

Keywords: database; expert supporting system; machine learning; immunohistochemistry; probabilistic
decision tree

1. Introduction

Immunohistochemical staining (IHC) is a unique antigen–antibody reaction method
that is used for pathological diagnosis by staining tissue sections [1–6]. It is an essential pro-
cess in pathologic diagnosis and is often very challenging owing to exponentially increasing
IHC data and complex cases of hematolymphoid diseases [1–3,5–8]. Hematolymphoid
neoplasms are mainly classified as B-, T-, and NK/T cells and histiocytic neoplasms ac-
cording to IHC profiles, and each of these lymphomas can be divided into many subtypes
arising from every developmental stage of mature and immature lymphocytes, which may
need different IHC marker profiles [1,4,6,9]. Therefore, the accurate pathological diagnosis
of each subtype mainly depends on the appropriate selection of IHC panels, knowledge
of the pathologist, and interpretation of the IHC results, which could easily be biased by
individual pathologist experience [1,5,10]. Many new IHC antibodies for different hema-
tolymphoid neoplasms are introduced annually, and over a hundred thousand studies
applying IHC have been published since 2000 just in the human brain, which makes it
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difficult to memorize all the newly developed antibodies and understand the expression
characteristics of various tumors [11–15]. In addition, recent developments in digital pathol-
ogy require a proper reference database of IHC tests to combine medical knowledge with
individual medical problems [16]. Attempts have been made to address this problem
by adopting an algorithmic approach or using standardized IHC panels for specific and
differential diagnosis [8,14,17]. However, the clinical situation of each case, particularly in
hematolymphoid neoplasms, is unique and case-sensitive, and generalized application of
a particular IHC panel or specific algorithm is not easy and can be time-consuming and
labor-intensive.

To support this qualitative analysis, a machine-learning based expert supporting
system, ImmunoGenius, was recently developed as a mobile application (iOS and An-
droid) and showed a generally acceptable hit rate of 95% in the diagnosis of lymphoid
neoplasms [2]. However, a high hit rate was mostly observed in B-cell lymphomas, includ-
ing diffuse large B-cell (DLBCL), follicular, mucosa-associated lymphoid tissue (MALT),
and Burkitt lymphomas, with zero errors. An incorrect predictive diagnosis was observed
in plasmablastic, mantle cell (MCL), extranodal NK/T-cell, and nasal type lymphomas,
along with T-lymphoblastic leukemia/lymphoma. In Hodgkin lymphomas, the error rate
was 50%. All these errors were associated with atypical IHC profiles, lack of site- and
disease-specific markers, overlapping IHC profiles between disease entities, and mainly
due to lack of external validation with a large number of cases.

To reduce biases in IHC selection and predict differential diagnoses more accurately by
pathologists using ImmunoGenius, we evaluated the prediction accuracy of this software
using nationwide data from 25 university hospitals in Korea to externally validate the
clinical utility of this application.

2. Materials and Methods

This study was approved by the Institutional Review Board of The Catholic University
of Korea College of Medicine (SC17RCDI0074). The requirement for informed consent was
waived with the permission of the Institutional Review Board.

2.1. Machine-Learning Expert Supporting System, ImmunoGenius

ImmunoGenius is a reactive native mobile application developed with NoSQL for iOS
and Android platforms in 2018, which can be universally used in iPhones, iPads, Android
phones, and tablet devices (Figure 1).

Figure 1. Machine-learning based mobile IHC interpretation supporting software, “ImmunoGenius”.

It was designed to search and select targeted differential diagnoses and generate a
2 × 2 table with disease names in the left column and IHC antibody names in the first
row (Figure 2 and Supplementary Video S1). Representative IHC profiles appear in the
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corresponding cells as ++ for 75–100% positivity, + for 50–74%, +/− for 30–49%, −/+ for
10–29%, and − for 0–9% with graded shades. Users can compare IHC profiles between
selected diseases and add or remove rows (diseases) or columns (IHC antibodies) to
customize the table. Additional IHC profiles can be added using buttons on the right side.
Once the user inputs the IHC results for their case, the 10 most probable diagnoses as
calculated by the diagnosis precision algorithm appear below, along with the estimated
probability in percentage (red numbers) (Figure 2 and Supplementary Video S1). The key
mechanism of this mobile application is based on Bayes’ theorem and the probabilistic
decision-tree-like nature of IHC results (Supplementary Figure S1). The database of the
IHC expression profile of approximately 600 antibodies in about 5000 neoplasms was built
based on knowledge from major textbooks and literature, including the World Health
Organization (WHO) Classification of Tumors series (IARC, Lyon, France). The IHC
profiles of over 150 types of lymphoid neoplasms, according to the WHO classification,
were also included.
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In a previous developmental validation study, IHC profile data and diagnoses origi-
nally made by pathologists were compared with the top 10 predictive diagnoses produced
by the algorithm. IHC profile data of 994 patients with lymphoma were obtained from the
archives of two independent university hospitals, Yeouido and Seoul St. Mary’s Hospital,
College of Medicine, The Catholic University of Korea, from 2010 to 2017. Approximately
80% of lymphoma cases at Seoul St. Mary’s Hospital were referred from various insti-
tutes in Korea. The retrieved data were divided 6:4 for training and validation purposes.
Cases with inconclusive diagnoses or inadequate IHC profiles (fewer than three antibodies,
inconclusive results, and absence of markers for tumor origins, but only prognostic or
therapeutic markers, such as epidermal growth factor receptor or p53) were excluded. The
diagnosis precision hit rate was determined by including the original diagnosis in the top
10 predictive diagnoses drawn by the algorithm. An inclusive hit rate was when there was
no significant difference in the IHC profile between the original and predictive diagnoses,
and the only difference was in location if the two diagnoses shared the same origin of cells
(e.g., nodal vs. extranodal marginal zone lymphoma). The algorithm was validated by
comparing the hit rates of the training and validation data for lymphomas.

2.2. External Validation Using Nationwide IHC Dataset of Lymphoid Neoplasms

To expand the diagnostic utility and validity, we tested a larger nationwide dataset
of IHC profiles collected from 25 university hospitals with the help of the Korean Study
Group of Hematopathology. IHC profile data for 3722 patients with lymphoma diagnosed
between 2015 and 2016 were retrieved from the archives of 25 independent university
hospitals, which represent the national population (Table 1).

Table 1. Immunohistochemistry profile data from 25 university hospitals.

No. Name of the Institute No. of Cases

1 Ajou University Hospital 456
2 Asan Medical Center 113
3 Chonnam National University Hwasun Hospital 434
4 Chonnam National University Hospital 146
5 Dong-A University Hospital 117
6 Eulji University Hospital 61
7 Ewha Womans University Mokdong Hospital 83
8 Gyeongsang National University 102
9 Gyeongsang National University Changwon Hospital 35
10 Hallym University Sacred Heart Hospital 93
11 Inje University Haeundae Paik Hospital 117
12 Inje University Sanggye Paik Hospital 49
13 Jeonbuk National University Hospital 206
14 Keimyung University Dongsan Medical Center 137
15 Konkuk University Hospital 58
16 Korea University Guro Hospital 160
17 Kosin University Gospel Hospital 95
18 Nowon Eulji Medical Center, Eulji University 16
19 Presbyterian Medical Center 74
20 Seoul Metropolitan Government-Seoul National University Boramae Medical Center 152
21 Soonchunhyang University Bucheon Hospital 112
22 Soonchunhyang University Seoul Hospital 59
23 The Catholic University of Korea, Seoul St. Mary’s Hospital 591
24 The Catholic University of Korea, Yeouido St. Mary’s Hospital 59
25 Ulsan University Hospital 197

Total No. of cases 3722

This sample size is also reported in the previous publication of our research group by
Jung et al. The sample size used in Jung et al.’s included a total of 7737 patients, and the
distribution of diagnosis according to anatomical site was evaluated in 7689 patients [18].
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Cases with ambiguous diagnoses, incomplete IHC data, or duplicated cases due to hospital
transfer were excluded in the present study and only IHC data from 3722 patients were
used. The common anatomic location for the acquired sample used in the Jung et al. study
was as follows: the extranodal site commonly involved in certain anatomical regions such
as the gastrointestinal tract (35.7%), bone and soft tissue (10%), Waldeyer’s ring (7.1%), and
the central nervous system (7.0%). The gastrointestinal tract and eye were most commonly
affected by MALT lymphoma, while ENKTL lymphoma was more prevalent in the nasal
region. Furthermore, information regarding the source of the acquired specimen can be
found in Jung et al.’s publication from our research group [18].

All patient data related to identification, except for the original diagnosis and IHC
results, were blinded before data processing. The presumptive diagnostic accuracy was de-
termined following the same method as the training and validation process by the inclusion
of the original diagnosis in the top 10 presumptive diagnoses drawn by the application.

2.3. Statistical Analysis

Time and computational complexity were evaluated by testing the mobile application.
The chi-square test was used to compare the accuracy of the original and presumptive
diagnoses. The statistical analysis was performed using a web-based statistical analysis by
Web-R (http://web-r.org (accessed on 8 February 2023)).

3. Results
3.1. External Validation Data Characteristics

The original diagnoses from the external validation data are presented in Table 2.
A total of 2993 lymphoma cases were retrieved for external validation. In the external
validation data, diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS) was
the most common, with 1239 cases (41.3%), and the second most common was extranodal
marginal zone lymphoma of mucosa associated lymphoid tissue (MALT), with 436 cases
(14.5%). Follicular lymphoma, with 203 cases (6.7%), was the third most common in the
external validation dataset. In the external validation data, more than 3% of cases were
extranodal NK/T-cell lymphoma (nasal type), while angioimmunoblastic T-cell lymphoma,
peripheral T-cell lymphoma, NOS were 121 (4.0%), 110 (3.6%), and 103 (3.4%), respectively.
In addition, the remaining lymphoma cases in the external validation data were less
than 3%.

Table 2. Cases with discordant results between the original and predictive diagnoses in training,
validation, and external validation data.

Type of Lymphoma Training Data Validation Data External Validation Data
Error/No. % Error/No. % Error/No. %

B lymphoblastic leukemia/lymphoma 0/8 0 0/5 0 1/20 5.0
Chronic lymphocytic leukemia/small

lymphocytic lymphoma 0/20 0 0/11 0 1/57 1.8

Extranodal marginal zone lymphoma of MALT
(lymphoma) 0/78 0 0/74 0 63/436 14.4

Nodal marginal zone lymphoma 0/4 0 0/5 0 11/36 30.5
Plasma cell myeloma 0/3 0 0/0 0 4/31 12.9
Follicular lymphoma 0/62 0 0/22 0 11/203 5.4

Mantle cell lymphoma 1/24 4.2 0/19 0 1/73 1.4
DLBCL
-NOS 0/216 0 0/145 0 56/1239 4.5

-T-cell/histiocyte-rich 0/2 0 0/0 0 0/7 0.0
-Primary DLBCL of the CNS 0/9 0 0/0 0 3/60 5.0

-Associated with chronic inflammation - - - - 0/2 0.0
-EBV positive DLBCL of elderly 0/1 0 0/0 0 2/29 6.9

-Primary cutaneous DLBCL, leg type 0/0 0 0/1 0 0/3 0.0

http://web-r.org
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Table 2. Cont.

Type of Lymphoma Training Data Validation Data External Validation Data
Error/No. % Error/No. % Error/No. %

Primary mediastinal (thymic) large B-cell
lymphoma 0/9 0 0/3 0 5/29 17.2

Plasmablastic lymphoma 3/3 100 0/0 0 7/11 63.6
Primary effusion lymphoma 0/1 0 0/0 0 0/1 0.0

Burkitt lymphoma 0/17 0 0/11 0 0/42 0.0
B-cell lymphoma, unclassifiable, with features

intermediate between DLBCL and Burkitt
lymphoma

0/3 0 0/0 0 10/13 76.9

Primary cutaneous follicle center lymphoma 0/0 0 1/2 50 2/4 50.0
T lymphoblastic leukemia/lymphoma 0/17 0 0/7 0 1/44 2.3

Extranodal NK/T-cell lymphoma. nasal type 0/25 0 0/15 0 8/121 6.6
Adult T-cell leukemia/ lymphoma 1/1 100 0/0 0 1/2 50.0

Enteropathy-associated T-cell lymphoma
-Type 1 - - - - 2/2 100.0
-Type 2 - - - - 5/16 31.3

Mycosis fungoides 0/0 0 0/3 0 3/22 13.6
Primary cutaneous (CD30-positive T-cell)

ALCL 0/1 0 0/0 0 6/12 50.0

Primary cutaneous gamma-delta T-cell
lymphoma - - - - 1/1 100.0

Subcutaneous panniculitis-like T-cell
lymphoma 0/0 0 0/1 0 2/6 33.3

Peripheral T-cell lymphoma, NOS 9/23 34.7 4.12 33.3 13/103 12.6
Angioimmunoblastic T-cell lymphoma 8/16 50 3/7 42.8 12/110 10.9

ALCL, ALK-positive 0/5 0 0/2 0 0/33 0.0
ALCL, ALK-negative 3/9 33.3 2/6 33.3 6/37 16.2

Nodular lymphocyte-predominant Hodgkin
lymphoma 0/0 0 1/2 50 4/6 66.7

Classical Hodgkin lymphoma, NOS 1/8 12.5 2/11 18.2 3/16 18.8
Nodular sclerosis classical Hodgkin lymphoma 3/21 14.3 1/5 20 12/69 17.3
Mixed cellularity classical Hodgkin lymphoma 0/7 0 0/8 0 9/63 14.2

Hepatosplenic T-cell lymphoma - - - - 1/1 100.0
Lymphocyte rich Classical HL - - - - 2/15 13.3

Lymphomatoid granulomatosis - - - - 3/4 75.0
Lymphoplasmacytic lymphoma - - - - 2/6 33.3
Primary cutaneous CD4 positive
small/mediumT-cell lymphoma - - - - 3/4 75.0

Splenic B-cell lymphoma/leukemia,
unclassifiable - - - - 0/1 0.0

Splenic B-cell marginal zone lymphoma - - - - 1/1 100.0
Systemic EBV+ T-cell lymphoproliferative

disease of childhood - - - - 1/2 50.0

Total 32/602 5.3 17/392 4.3 278/2993 9.2

3.2. External Validation Results

In the external validation data, the hit rate for the predictive diagnosis (top 10) was
90.7% (Table 3). Detailed results of the discordant cases between the original training
and external validation data of the presumptive diagnoses are presented in Table 2. The
hit rate of the presumptive diagnosis in the first, second, and third most common type
was excellent, with few error cases in DLBCL, NOS (4.5%, 56/1239), MALT lymphoma
(14.4%, 63/436), and follicular lymphoma (5.4%, 11/203), respectively. The hit rate of the
presumptive diagnosis was also excellent, with few error cases in angioimmunoblastic
T-cell lymphoma (10.9%, 12/110), primary DLBCL of the CNS (5.0%, 3/60), chronic lym-
phocytic leukemia/small lymphocytic lymphoma (1.8%, 1/57), and mantle cell lymphoma
(1.4%, 1/73). It showed generally good performance in most B-cell lymphomas except
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for B-cell lymphoma that was unclassifiable, with features intermediate between DLBCL
and Burkitt lymphoma (10 errors out of 13 cases, 76.9%) and primary cutaneous follicle
center lymphoma (two errors out of four cases, 50.0%). In T-cell lymphomas, the hit rate
showed generally equivalent performance to B-cell lymphomas, except for T lymphoblastic
leukemia/lymphoma (only 1 error in 44 cases, 2.3%). In enteropathy-associated T-cell
lymphoma (types 1 and 2), primary cutaneous CD4 + small/medium T-cell lymphoma,
peripheral T-cell lymphoma, NOS, and ALCL, ALK-negative, the error rates were 38.9,
75.0, 12.6, and 16.2%, respectively. The error rates were 66.7% in nodular lymphocyte-
predominant Hodgkin lymphoma, 17.3% in nodular sclerosis classical Hodgkin lymphoma,
and 18.8% in classical Hodgkin lymphoma, NOS. In the external validation of the presump-
tive diagnosis, the hit rate was 100% (no error) in primary effusion lymphoma, Burkitt
lymphoma, and splenic B-cell lymphoma/leukemia unclassifiable cases (0/1, 0/42, and
0/1, respectively). The hit rate of presumptive diagnoses showed an almost 100% error rate
in cases where training data were not available, such as primary cutaneous gamma-delta
T-cell lymphoma, hepatosplenic T-cell lymphoma, and splenic B-cell lymphoma/leukemia,
and thus, unclassifiable.

Table 3. A comparison of precision error rates for training, validation, and external validation datasets
of lymphoma cases.

Precision
Diagnosis

Training Data
(%)

Validation Data
(%)

External Validation
Data (%) Total (%)

Accurate results 570 (94.7) 365 (95.7) 2715 (90.7) 3650 (91.8)
Error results 32 (5.3) 17 (4.3) 278 (9.3) 327 (8.2)

Total 602 (100) 382 (100) 2993 (100) 3977 (100)

3.3. The Presumptive Error Rates between Training, Validation, External Validation Datasets, and
Performance in Computational Time

The error rates of presumptive diagnosis were 5.3, 4.3, and 9.3% in the training,
validation, and external validation datasets, respectively. The overall accuracy rate was
91.8% for lymphomas (Table 3). The application also exhibited acceptable hit rates of 94.7
and 95.7% in the training and validation datasets, respectively (Table 3). The hit rates
between training, validation, and external validation differ significantly.

Providing an analysis of computational time is crucial when evaluating machine
learning or deep learning algorithms. Comparing the time consumed during the diagnosis
process with and without the application is challenging both in terms of time and user
experience. This ImmunoGenius algorithm requires IHC data as input. The algorithm
operates on a native database of less than 5 MB and uses Bayesian theorem to generate
probabilistic diagnostic results that can be updated in real time as new IHC results are
input or changed.

4. Discussion

We externally validated the previously verified calculation of the probability of lym-
phoma using the IHC results from a probabilistic decision tree and corresponding mobile
application, ImmunoGenius. IHC profile data from 3722 cases were collected for external
validation. IHC profiles of these cases were collected from 25 university hospitals nation-
wide with the help of the Korean Study Group of Hematopathology. The presumptive
diagnosis drawn by the probabilistic decision tree algorithm was convincing, with an
accuracy of 91.8% for lymphomas.

The accuracy of the presumptive diagnosis algorithm in the validation data was
excellent for most B-cell lymphomas, including DLBCL, follicular lymphoma, CLL/SLL,
MALT lymphoma, and Burkitt lymphoma with zero error, which consisted majority of
all lymphoma cases (approximately two-thirds) [2]. However, the external validation
data, which included approximately 3000 cases from 25 university hospitals, revealed
low errors in the same lymphomas, including DLBCL (4.5%), follicular lymphoma (5.4%),
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CLL/SLL (1.8%), and MALT lymphoma (14.4%). The percentage of errors in the external
validation data are very small and are due to the large number of lymphoma cases in
the external validation data compared to the training and validation data. The error
for Burkitt’s lymphoma was zero. One case of MCL in the previous validation showed
an incorrect presumptive diagnosis, which was an atypical case of a cyclinD1-negative
MCL (IHC results: CD20 +, Bcl-2 +, CD3 −, CD10 −, Bcl-6 −, CD23 −, MUM1 −, and
p53 −). The external validation data also showed an incorrect presumptive diagnosis
for a case of MCL with unusual IHC findings (IHC results: CD3 +, CD8 +, CD56 +,
CD4 +, CD20 −, CD21 −, and EBV −). Both cases were confirmed by fluorescence in
situ hybridization with CCND1/IGH translocation. In plasmablastic lymphomas, the
training data showed incorrect presumptive diagnosis in all cases (3/3 cases), while in
the external validation, the error rate decreased from 100 to 63.6% (7/11 cases). The
IHC profile of plasmablastic lymphoma is relatively similar to that of other plasma cell
neoplasms, large B-cell lymphomas, and MALT lymphoma, in which CD30, CD38, CD138,
and CD79a are positive; however, CD20 is often negative [2,3,19,20]. All three retrieved
cases of plasmablastic lymphoma in the training data showed positive CD20, while the
four correct cases of plasmablastic lymphoma in the external validation data were negative
for CD20. All the incorrectly diagnosed cases were presumed to be either plasma cell
neoplasms, such as multiple myeloma and solitary plasmacytoma, or B cell neoplasms,
such as DLBCL, anaplastic variant (CD30 positive), and extranodal MALT lymphoma with
plasmacytoid differentiation. We believe that the main reason for the error in presumptive
diagnosis could be the lack of a disease-specific marker and IHC profile overlapping with
similar diseases.

In primary cutaneous follicle center lymphoma, both validation (1/2) and external
validation (2/4) datasets showed a 50% error in the presumptive diagnosis. The main
reason for this inaccurate presumption could be due to the similarity of the IHC profile to
follicular lymphoma. The ImmunoGenius algorithm does not consider clinicopathologic
information, such as tumor location and skin versus lymph node, which could explain the
incoherence in this case.

The algorithm showed heterogeneous performance in T-cell lymphomas compared to
B-cell lymphomas, except for ALCL and ALK-positive, which showed no error in presump-
tive diagnosis in all datasets (training, validation, and external validation). T lymphoblastic
leukemia/lymphoma and extranodal NK/T-cell lymphoma, nasal type revealed zero errors
in training and validation data; however, due to the large number of cases, a small number
of errors were found in the external validation data. A relatively accurate presumptive
diagnosis in T lymphoblastic leukemia/lymphoma and extranodal NK/T-cell lymphoma,
nasal type, could be due to the presence of disease-specific markers, such as TdT, CD56, and
EBER. However, external validation data for other T-cell lymphomas, such as adult T-cell
leukemia/lymphoma, enteropathy-associated T-cell lymphoma (types 1 and 2), periph-
eral T-cell lymphoma, NOS, ALCL, ALK-negative, primary cutaneous gamma-delta T-cell
lymphoma, and angioimmunoblastic T-cell lymphoma, showed a high range of presump-
tive diagnostic error rates from 10.9 to 100.0%. Adult T-cell leukemia/lymphoma, which
showed 100 and 50% error rates in the training and external validation datasets, respectively,
had similar IHC profiles to peripheral T-cell lymphoma, NOS, without disease-specific
markers, but only distinctive clinicopathologic features [2,19,20]. Similarly, enteropathy-
associated T-cell lymphomas also have no specific diagnostic IHC markers but distinctive
clinicopathologic findings and often share IHC profiles with peripheral T-cell lymphomas.
Moreover, ALCL, ALK-negative lymphoma shows anaplastic morphology with negative
ALK, which can share IHC profiles with peripheral T-cell lymphoma, NOS, Hodgkin lym-
phomas, and even with ALCL, ALK-positive type [2,19,20]. In angioimmunoblastic T-cell
lymphoma, which revealed a lower presumptive error in external validation data (10.9%)
compared to training (50%) and validation data (42.8%), programmed death-1 (PD-1) can
be considered a specific diagnostic marker [21]. However, many other lymphomas also
express PD-1 at a variable rate, and its positivity is often interpreted based on different
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histologic characteristic features [3,10,19]. A different category of nodal and extranodal
mature T-cell lymphomas is peripheral T-cell lymphoma, NOS, which does not correspond
to any of the entities clearly defined [20]. Therefore, the IHC profile of this lymphoma
covers a wide variety of different expressions and is often confused with that of other
T-cell lymphoma entities. In summary, T-cell lymphomas often show similar IHC profiles
and have no disease-specific IHC markers but can be differentially diagnosed based on
clinicopathologic findings with or without IHC profiles.

In Hodgkin lymphomas, the diagnostic error rates were 66.7% in nodular lymphocyte-
predominant Hodgkin lymphoma (4/6), 18.8% in classical Hodgkin lymphoma, NOS (3/16),
17.3% in the nodular sclerosis subtype (12/69), and 14.2% in the mixed cellularity subtype
(9/63), which were relatively similar to the findings from the training and validation
data. The nodular lymphocyte-predominant subtype of Hodgkin lymphoma shares an
IHC profile with T-cell/histiocyte-rich DLBCL and ALCL, ALK-negative, and similar
clinicopathologic features. Classical Hodgkin lymphoma and its subtypes share IHC
profiles with peripheral T-cell lymphoma, NOS. The differential diagnosis between these
two entities is not possible based only on the IHC profiles, especially if the specific marker
of Hodgkin lymphoma, CD15, is negative. Therefore, integrated and comprehensive
diagnosis, including clinicopathologic findings, in addition to the possible diagnosis using
IHC, is essential.

The current study supports our previous work and validates the feasibility and clinical
utility of presumptive diagnosis algorithm with the corresponding mobile application
ImmunoGenius, using IHC profiles in the differential diagnosis of lymphomas. The overall
accuracy rate of this machine-learning algorithm was 91.8% for lymphomas using training,
validation, and external validation data. The main reasons for the errors were atypical IHC
profiles, a lack of site-specific, disease-specific markers, overlapping IHC profiles between
disease entities, and mixed/combined tumors. Although this system can be a useful tool
for pathologists to make better decisions during the process of pathological diagnosis by
having a wide range of IHC profiles relevant to efficient and accurate differential diagnosis,
integrated interpretation with contextual information, such as clinical, radiological, and
pathological findings is highly recommended. Supportive use of this application is more
desirable. Further work to develop an application of artificial neural network algorithms to
optimize the disease, organ incidence, and antibody weight is recommended in the future.

4.1. Contribution of the Study

The major contribution of this multi-institutional study is the validation of a machine-
learning algorithm on a larger scale dataset of 3977 cases from 25 independent university
hospitals in Korea, which represents a nationwide clinical data and could reflect the real-
world data of the lymphoma cohort of Korea. The data collected between 2015 and 2016
represents the national population of Korea. The results show an overall hit rate of 91.8%
for the algorithm, demonstrating its potential to assist pathologists in making accurate
diagnoses. With such a large amount of data, this study provides robust evidence for
the effectiveness of this machine-learning algorithm, which could significantly improve
diagnostic accuracy for lymphoma.

4.2. Limitations of the Study

DLBCL, NOS represent a significant portion of the data sets used in this study. The
ImmunoGenius system shows a relatively high accuracy in classifying DLBCL (4.5% error
rate). We presume that the highest proportion of the IHC data of DLBCL, NOS in the
training (216/602, 35.8%) and validation (145/392, 40.0%) could contribute to the system’s
high accuracy in classifying this entity, whereas some of other entities account relatively
low amount of both the training set (TS) and the validation set (VS), such as nodal marginal
zone lymphoma (4/602, 0.6% of TS; 5/392, 1.2% of VS), plasma cell myeloma (4/602, 0.6%
of TS; 0/392, 0.0% of VS), follicular lymphoma (4/602, 0.6% of TS; 22/392, 5.6% of VS),
and MALT-lymphoma (78/602, 13.0% of TS; 74/392, 18.8% of VS). The lower amounts
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of IHC data of some entities for TS and VS, which could result in a higher level of error
in external validation. However, the incidence rates of lymphoma subtypes in this study
represent the real-world data of the Korean population, as the samples have been collected
from the clinical data of more than 25 university hospitals for two years. The high error
rate is also due to unusual IHC profiles, the absence of markers specific to the site and
disease, similarities in IHC profiles between different diseases, and the presence of mixed
or combined tumors. Another limitation of the study is that we validated ImmunoGenius
with the only data from the Korean ethnic population.

The machine learning algorithms require a large and diverse training dataset. For
rare subtypes of lymphoma, it can be challenging to obtain sufficient data to train the
algorithm accurately. However, past research has produced AI models that demonstrate
high accuracy in lymphoma classification but the sample size of these studies is small [22,23].
Additionally, another study developed an AI model capable of distinguishing DBCL from
non-lymphoma samples [24]. Furthermore, there is currently a lack of AI/machine learning
algorithms tested on a large multiethnic population data in order to produce a generalizable
outcome. As the AI field continues to expand, further work is required with high-quality
multi-ethnic dataset.

4.3. Future Direction

A schematic diagram of the integrated Hematoxylin and eosin (H&E), IHC AI model
with ImmunoGenius is shown in Figure 3. With the growth of the AI field, numerous
AI tools are being developed to predict lymph node metastasis, diagnose hematological
disorders, and detect breast cancer and be applicable in many other areas of science [25–30].
Previous research studies have shown that AI models demonstrate good performance in
various aspects of tumor detection, classification, gland segmentation, and grading in many
types of cancers [31–35]. However, the development of AI models for the analysis of IHC is
ongoing, and a good AI model for accurate classification of IHC is yet to be developed. Once
a good AI model for IHC is available, it can be integrated with our ImmunoGenius tool.
Based on the results of AI models that predict diagnosis on H&E images, a panel of IHC
can be suggested for further differential diagnosis. The integration of AI models for cancer
diagnosis, IHC panel suggestion, and IHC interpretation, along with ImmunoGenius, can
potentially revolutionize the field of cancer diagnosis and treatment. By analyzing vast
amounts of data, these models can help identify IHC markers, and ImmunoGenius can
make predictions with this input data. Employing these integrated models can help in the
accurate diagnosis of cancer and in reducing intra-observer variability. The AI-based model
for diagnosis not only helps in reducing the time and cost of diagnosis but also improves
accuracy and reliability. Overall, in the future, the integration of AI models for cancer
diagnosis from H&E slides, IHC interpretation AI models, and our ImmunoGenius holds
significant promise for improving cancer diagnosis and treatment, and ongoing research in
this field is likely to yield even more benefits in the future.
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5. Conclusions

The mobile application ImmunoGenius produced acceptable diagnostic hit rates for
all data, including the training, validation, and external validation datasets. The overall hit
rate of this machine-learning algorithm was 91.8%, which was slightly lower than that of the
previous validation data (95.7%). However, the current data represents the entire national
population from 25 university hospitals around the country. In differential diagnosis, due
to the lack of specific markers of some lymphomas, clinical data, and histological features
should be considered to make proper use of this system in the pathologic decision-making
process. This system will be useful in assisting pathologists in making precise decisions
during diagnosis. Further studies to recommend IHC panels for particularly complex
problems regarding differential diagnosis and application of artificial neural network
algorithms are needed in the future.
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