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ABSTRACT

Background: Fractional flow reserve (FFR) based on computed tomography (CT) 
has been shown to better identify ischemia-causing coronary stenosis. However, this 
current technology requires high computational power, which inhibits its widespread 
implementation in clinical practice. This prospective, multicenter study aimed at validating 
the diagnostic performance of a novel simple CT based fractional flow reserve (CT-FFR) 
calculation method in patients with coronary artery disease.
Methods: Patients who underwent coronary CT angiography (CCTA) within 90 days and 
invasive coronary angiography (ICA) were prospectively enrolled. A hemodynamically 
significant lesion was defined as an FFR ≤ 0.80, and the area under the receiver operating 
characteristic curve (AUC) was the primary measure. After the planned analysis for the initial 
algorithm A, we performed another set of exploratory analyses for an improved algorithm B.
Results: Of 184 patients who agreed to participate in the study, 151 were finally analyzed. 
Hemodynamically significant lesions were observed in 79 patients (52.3%). The AUC was 0.71 
(95% confidence interval [CI], 0.63–0.80) for CCTA, 0.65 (95% CI, 0.56–0.74) for CT-FFR 
algorithm A (P = 0.866), and 0.78 (95% CI, 0.70–0.86) for algorithm B (P = 0.112). Diagnostic 
accuracy was 0.63 (0.55–0.71) for CCTA alone, 0.66 (0.58–0.74) for algorithm A, and 0.76 
(0.68–0.82) for algorithm B.
Conclusion: This study suggests the feasibility of automated CT-FFR, which can be 
performed on-site within several hours. However, the diagnostic performance of the current 
algorithm does not meet the a priori criteria for superiority. Future research is required to 
improve the accuracy.
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INTRODUCTION

Assessment of myocardial ischemia is an essential step in the treatment of coronary 
artery disease.1,2 Fractional flow reserve (FFR)-guided coronary revascularization has 
shown improved clinical outcomes.3,4 However, calculating using intracoronary pressure 
measurement, FFR is, by nature, complementary to invasive coronary angiography (ICA).

Recent technological advances have enabled the calculation of FFRs from computed 
tomography (CT) images (FFRCT).5,6 FFRCT has shown to improve diagnostic performance in 
patients with moderate coronary stenosis.7-9 In addition, the use of FFRCT in clinical practice 
has shown a reduction in unnecessary ICA, favorable clinical outcomes, and higher cost-
effectiveness than usual care.10-13

The main limitation of the currently available FFRCT technology is the requirement for 
high-performance computational power. CT images need to be sent to the vendor, and 
the analyses are returned in several hours to days, which hampers the widespread use of 
FFRCT. Recently, a novel, simpler simulation method for predicting FFR with coronary CT 
angiography (CCTA) has been developed that can be performed in on-site computers.14,15 
Potential advantages include reduced clinical decision time, less concern about privacy 
issues, and lower costs. A retrospective study demonstrated the acceptable diagnostic 
performance of the algorithm.16

Here, we report the results of a prospective trial designed to validate the diagnostic 
performance of CT-based FFR (CT-FFR). CT-FFR was compared with anatomical analysis 
from CCTA to detect functionally significant lesions assessed using invasive FFR.

METHODS

Study purpose and design
This study was a prospective, multicenter, comparative, and confirmatory trial. The primary 
objective was to assess the diagnostic performance of CT-FFR based on routinely acquired CCTA 
(HeartMedi 1.0; AiMedic, Seoul, Korea) in patients with coronary artery disease. This study 
conformed to the protocol and principles established in the latest version of the Declaration of 
Helsinki (revised version 2013). The study design has been published elsewhere.17

Study population and process
Patients with coronary artery disease who had undergone CCTA within 90 days and 
non-emergency ICA and invasive FFR were eligible for the trial. Patients who provided 
informed consent were enrolled in this study. The inclusion and exclusion criteria are 
listed in Supplementary Table 1. The 12 participating centers and investigators are listed in 
Supplementary Table 2.

All study images were anonymized and handled by a principal investigator. Blinding was 
maintained between the CCTA core lab, ICA core lab, and the manufacturer throughout the 
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data transfer process. CCTA images were obtained with ≥ 64 multidetector slices and a row 
width of ≤ 0.75 mm. The images were sent to an independent CCTA core laboratory (Seoul 
National University Bundang Hospital), where the lesion severity was quantified by two 
independent, blinded radiologists. The degree of stenosis was measured according to the 
guidelines of the Society of Cardiovascular Computed Tomography.18

ICA and invasive FFR procedures were performed in accordance with the American College 
of Cardiology/American Heart Association guidelines for coronary angiography and 
intervention.19 Invasive FFR was measured using a sensor-tipped 0.014-inch guidewire 
(PressureWire; St. Jude Medical, St. Paul, MN or Verrata wire; Philips, Eindhoven, the 
Netherlands). Coronary pressure wire was located distal to the lesion, and hyperemia was 
induced by intravenous infusion of adenosine at a dose of 140 μg/kg/min. The anonymized 
ICA images and FFR raw data were sent to the core laboratory (Seoul National University 
Hospital). Quantitative angiographic analysis was performed by an experienced technician. 
The FFR measurements were validated, confirming the absence of potential bias, such as the 
achievement of maximum hyperemia or pressure drift.

Segmented and reconstructed CCTA images were built using the CCTA core lab. The location 
of the invasive FFR measurement was indicated on the reconstructed CCTA by the ICA core 
lab. Next, the image was transferred to the manufacturer (AiMedic) by the central study 
coordinator while blinding the invasive FFR value. CT-FFR was calculated using HeartMedi 
software, according to the manufacturer’s instructions.

Study hypothesis and sample size calculation
The primary measure of performance was the area under the receiver operating characteristic 
curve (AUC) for detecting hemodynamically significant stenosis. The gold standard for 
significant stenosis was defined as an invasive FFR ≤ 0.80. We hypothesized that CT-FFR 
would show a higher AUC than CCTA. The AUC of CT-FFR and CCTA were assumed to 
be 0.90 and 0.81, respectively, with reference to previous studies.7,16,20 The assumptions 
included a 31.5% prevalence of hemodynamically significant stenosis, a correlation 
coefficient of 0.6, and an attrition rate of 15%.7,21-23 To ensure a statistical power of 80% and a 
one-sided significance level of 0.025, a sample size of 184 was required.

Statistical analysis
The independent statistical core laboratory performed statistical analysis after trial 
completion. For the primary efficacy measure, the AUC of CT-FFR was compared with 
that of the percentage of stenosis from CCTA. Delong’s test was used to compare the two 
correlated AUCs.24 A Bland–Altman plot was used to visualize the agreement between 
CT-FFR and invasive FFR.25 Secondary efficacy measures included diagnostic accuracy, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 
the correlation coefficient. The cutoff for significant obstruction on CCTA was defined 
as stenosis diameter ≥ 50%. The cutoff values for CT-FFR and invasive FFR were ≤ 0.8. 
Correlation was assessed using Pearson’s correlation coefficient (r) and P value.

The initial algorithm (algorithm A) analysis was completed in July 2021. As shown below, the 
results did not meet the predefined superiority criteria. After the initial results were disclosed 
to the sponsor, the researchers and sponsor agreed to perform an additional exploratory 
analysis using an improved version of the algorithm for future hypothesis generation 
(algorithm B). The difference between these two algorithms is due to the fully automatic 
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segmentation method (further described in the discussion section). The analysis of algorithm 
B was completed in August 2021. In this article, we presented both the results of the initially 
planned analysis of algorithm A and the unplanned exploratory analysis of algorithm B.

Ethics statement
The study protocol was approved by the ethics committee of each participating center, and 
informed consent was obtained from all enrolled patients. The trial was registered with the 
Clinical Research Information Service (ID: KCT0002725) (Korea Centers for Disease Control 
and Prevention, Ministry of Health and Welfare, Osong, Chungcheongbuk-do, Republic of 
Korea).

RESULTS

Study flow and baseline characteristics
Of the 184 patients who agreed to participate in this study, 33 patients were excluded because 
of unqualified FFR (n = 9), protocol violation (n = 8), poor CCTA quality (n = 2), and other 
unexpected causes (n = 14). Finally, 151 participants were included in the analysis.

The mean age was 63.3 years, and 70% were men (Table 1). The prevalence rates of 
hypertension, diabetes and cigarette smoking were 56%, 34%, and 17%, respectively. 
Although acute myocardial infarction was excluded from the study protocol, 69% of the study 
participants had silent ischemia or stable coronary disease.

All participants had CCTA images taken within 90 days, and the average stenosis diameter 
of the target lesions was estimated to be 55.9% (Table 2). ICA revealed that the average 
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Table 1. Baseline characteristics of enrolled patients
Variables Values
Age

Mean ± SD 63.3 ± 9.4
Range 38–84

Male 106 (70.2)
Body mass index, kg/m2 25.2 ± 2.8
Diabetes 51 (33.8)
Hypertension 85 (56.3)
Hyperlipidemia 82 (54.3)
Current smoker 25 (16.6)
Chronic kidney disease 1 (0.7)
Previous stroke 18 (11.9)
History of heart failure 3 (2.0)
Vital signs

Systolic blood pressure, mmHg 134.2 ± 17.2
Diastolic blood pressure, mmHg 76.5 ± 9.6
Heart rate, beets/min 71.2 ± 11.6

Left ventricular ejection fraction, % 63.2 ± 7.6 (n = 139)
Laboratory measures

Hemoglobin, mg/dL 14.0 ± 1.6
Hematocrit, % 41.6 ± 4.3
Creatinine, mg/dL 0.8 ± 0.2

Clinical diagnosis
Silent ischemia 23 (15.2)
Stable angina 81 (53.6)
Unstable angina 47 (31.1)

Values are presented as number (%) or mean ± SD.



diameter of the stenosis was 61%. The target lesion locations were as follows: the left anterior 
descending artery (78.2%), the circumflex artery (11.3%), the right coronary artery (8.6%), 
and the left main coronary artery (2%) (Table 3). The mean invasive FFR was 0.79, and 79 
(52.3%) patients had a hemodynamically significant lesion. The mean estimated CT-FFR was 
0.81. The distributions of invasive FFR, CT-FFR and CCTA diameter stenosis are shown in 
Supplementary Fig. 1.

Results for study endpoints: algorithm A
For the main per-patient analysis, one index lesion was chosen for each patient, and 151 lesions 
were included in the analysis. The invasive FFR was ≤ 0.80 in 79 lesions (52.3%), CCTA diameter 
stenosis was ≥ 50% in 97 lesions (64.2%), and CT-FFR was ≤ 0.80 in 90 lesions (59.6%).

The AUC to detect hemodynamically significant stenosis, defined as invasive FFR ≤ 0.80, was 
0.71 (95% confidence intervals [CIs], 0.63–0.80) for CCTA and 0.65 (95% CI, 0.56–0.74) for 
CT-FFR, respectively (Fig. 1A). These results did not meet the primary efficacy hypothesis 
that CT-FFR is superior to CCTA (P = 0.866). The diagnostic accuracy, sensitivity, specificity, 
PPV, and NPV for CCTA and CT-FFR are presented in Table 4. Combining two values of CCTA 
≥ 50% and CT-FFR ≤ 0.8 did not remarkably improve accuracy. The scatter plots of CCTA 
and CT-FFR versus invasive FFR are presented in Supplementary Fig. 2 (R = 0.365, P < 0.001 
for CCTA and FFR; R = 0.285, P < 0.001 for CT-FFR and FFR). Bland–Altman plots for the 
difference between the estimated CT-FFR and the observed invasive FFR are shown in Fig. 2A.

5/11

A Novel CT-Derived FFR

https://doi.org/10.3346/jkms.2023.38.e254https://jkms.org

Table 2. Details of CCTA, coronary angiography, and FFR
Characteristics No. (%) of patients (N = 151)
CCTA and CT-FFR characteristics

CCTA modality
64 Multi-detector row coronary CT angiography 151 (100)

Calcium score (n = 140) 237.3 ± 252.6
Average diameter stenosis (%) 55.9 ± 20.7
Average CT-FFR 0.81 ± 0.08

Coronary angiography and FFR characteristics
Total number of diseased lesions

1 86 (57.0)
2 45 (39.8)
≥ 3 20 (13.2)

Average diameter stenosis 61.15 ± 13.40
Average resting Pa/Pd 0.92 ± 0.07
Average hyperemic Pa/Pd 0.79 ± 0.12

Values are presented as number (%) or mean ± SD.
CCTA = coronary CT angiography, FFR = fractional flow reserve, CT = computed tomography.

Table 3. Lesion characteristics of per-patient analysis

Variables Values
Lesion severity on CCTA, CT-FFR, and FFR 151

CCTA (≥ 50%) 97 (64.24)
CT-FFR (≤ 0.8) 90 (59.60)
FFR (≤ 0.8) 79 (52.32)

CCTA (≥ 50%) and CT-FFR (≤ 0.8) 62 (41.06)
CCTA (≥ 50%) or CT-FFR (≤ 0.8) 125 (82.78)

Lesion location
Left main coronary artery 3 (1.99)
Left anterior descending artery 118 (78.15)
Circumflex artery 17 (11.26)
Right coronary artery 13 (8.61)

CCTA = coronary computed tomography angiography, CT-FFR = computed tomography-based fractional flow 
reserve, FFR = fractional flow reserve.
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Fig. 1. AUC of CT-FFR and CCTA. AUC of CT-FFR (red) and CCTA stenosis diameter (blue) for detecting hemodynamically significant lesion defined by invasive FFR 
≤ 0.80. (A) Algorithm A, (B) Algorithm B. 
AUC = area under the receiver operating characteristic curve, CT-FFR = computed tomography-based fractional flow reserve, CCTA = coronary computed 
tomography angiography, FFR = fractional flow reserve.

Table 4. Diagnostic performance of CCTA and CT-FFR
Variables CCTA ≥ 50% Algorithm A Algorithm B

CT-FFR ≤ 0.8 CCTA ≥ 50% and 
CT-FFR ≤ 0.8

CCTA ≥ 50% or  
CT-FFR ≤ 0.8

CT-FFR ≤ 0.8 CCTA ≥ 50% and 
CT-FFR ≤ 0.8

CCTA ≥ 50% or  
CT-FFR ≤ 0.8

Accuracy 0.63 (0.55–0.71) 0.66 (0.58–0.74) 0.66 (0.58–0.74) 0.63 (0.55–0.71) 0.76 (0.68–0.82) 0.71 (0.63–0.78) 0.68 (0.59–0.75)
Sensitivity 0.76 (0.65–0.85) 0.75 (0.64–0.84) 0.57 (0.45–0.68) 0.94 (0.86–0.98) 0.73 (0.62–0.83) 0.57 (0.45–0.68) 0.92 (0.84–0.97)
Specificity 0.49 (0.37–0.61) 0.57 (0.45–0.69) 0.76 (0.65–0.86) 0.29 (0.19–0.41) 0.78 (0.66–0.87) 0.86 (0.76–0.93) 0.40 (0.29–0.53)
PPV 0.62 (0.51–0.72) 0.66 (0.55–0.75) 0.73 (0.60–0.83) 0.59 (0.50–0.68) 0.78 (0.67–0.87) 0.82 (0.69–0.91) 0.63 (0.53–0.72)
NPV 0.65 (0.51–0.77) 0.67 (0.54–0.79) 0.62 (0.51–0.72) 0.81 (0.61–0.93) 0.73 (0.61–0.82) 0.65 (0.54–0.74) 0.83 (0.66–0.93)
CCTA = coronary computed tomography angiography, CT-FFR = computed tomography-based fractional flow reserve.
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Fig. 2. Bland-Altman plots. Bland-Altman plots for the difference between the observed invasive fractional flow reserve and the estimated computed 
tomography-based fractional flow reserve. (A) Algorithm A, (B) Algorithm B.



Results for algorithm B
After the initial analysis, we allowed the algorithm to be improved while maintaining 
blinding to the invasive FFR results. The manufacturer made amendments for more accurate 
segmentation and hemodynamic bifurcation calculations. The analysis was performed with 
the same statistical frame using the CT-FFR results from algorithm B. This set of analyses is 
unplanned and should be considered exploratory for future hypotheses generation.

The AUC for detecting hemodynamically significant stenosis, defined as invasive FFR ≤ 0.80, 
was 0.78 (95% CI, 0.70–0.86) for CT-FFR (Fig. 1B). This was numerically higher than that 
for CCTA; however, the difference was not statistically significant (P = 0.112). The diagnostic 
accuracy also increased to 76%, largely due to the improved specificity (Table 4). The Pearson’s 
correlation coefficient between the invasive FFR and CT-FFR was 0.402 (P < 0.001). The 
Bland–Altman plot showed that CT-FFR tended to underestimate hemodynamic significance 
for severe lesions (lower CT-FFR compared to invasive FFR) (Fig. 2B). A representative case is 
shown in Fig. 3.

DISCUSSION

This study demonstrated the feasibility of fully automated on-site CT-FFR estimation. While 
the results from Algorithm A were disappointing, the improved version of Algorithm B 
showed promising results. The receiver operating characteristic curve suggested superior 
discrimination of CT-FFR over CCTA. The diagnostic accuracy of CT-FFR was higher than 
that of CCTA.

FFR-guided coronary revascularization is currently considered the standard of care.1,2 FFRCT 
enables noninvasive functional assessment based on the anatomical analysis of CCTA. Current 
guidelines suggest that FFRCT can be useful for the diagnosis of vessel-specific ischemia and 
guide decision-making regarding the use of coronary revascularization.1,2 The currently 
available FFRCT simulates computational fluid dynamics of the aorta and coronary arteries 
using lumped parameter models. The prospective multicenter Diagnosis of Ischemia-causing 
Stenoses Obtained Via Noninvasive Fractional flow Reserve (DISCOVER-FLOW) study was the 
first investigation to show that noninvasive FFR derived from CCTA shows high diagnostic 
performance for the detection and exclusion of coronary lesions that cause ischemia.8 FFRCT 
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CT-FFR
0.75

FFR 
0.79

A B C

Fig. 3. A representative figure of (A) coronary CT angio, (B) invasive FFR, (C) and CT-FFR. 
CT-FFR = computed tomography-based fractional flow reserve, FFR = fractional flow reserve, CT = computed tomography.



of 158 vessels from 103 patients showed a per-vessel sensitivity of 87.9%, a specificity of 
82.2%, and an accuracy of 84.3% compared to invasive FFR. The Determination of Fractional 
Flow Reserve by Anatomic CT Angiography (DeFACTO) trial was the second multicenter 
investigation that included a larger patient population consisting of 252 patients with 407 
vessels from 17 centers.9 The trial demonstrated that use of noninvasive FFRCT plus CCTA 
improved diagnostic accuracy and discrimination compared to CCTA alone for the diagnosis 
of hemodynamically significant coronary disease. The Analysis of Coronary Blood Flow Using 
CT Angiography: Next Steps (NXT) trial paid special attention to acquisition of high-quality 
CT images.7 In addition, technical refinements of the FFRCT algorithm were adopted. The 
NXT trial showed high diagnostic performance: AUC for FFRCT was 0.90 compared to 0.81 for 
CCTA. However, this calculation requires high-throughput computational power, which is not 
readily available at clinical sites. The need for data transfer, delay in the analysis, and high cost, 
all lead to the low penetration of this technology into clinical practice.

This study proposes the feasibility of an on-site CT-FFR. The analysis can be run on consumer-
grade workstations, which takes approximately an hour. The beauty lies in the automated 
segmentation and simulation processes. Human intervention was not required throughout this 
process. However, this study also demonstrated that higher diagnostic performance should 
be achieved for the algorithm to be implemented in clinical practice. The AUC of CT-FFR 
algorithm B was numerically higher than that of CCTA; however, the difference was smaller 
than expected and failed to reject the null hypothesis. The observed AUCs (0.71 and 0.78 
for CCTA and CT-FFR, respectively) were lower than the study assumptions (0.81 and 0.90, 
respectively). However, in the DeFACTO trial, where the AUCs were comparable to ours (0.68 
and 0.81 for CCTA and FFRCT, respectively), the difference was statistically significant.9

Current technology aims at automated on-site CT-FFR calculations with minimal human 
intervention. The key to achieving this goal is full automation of vessel segmentation 
and computational fluid dynamics calculations. The automated segmentation method in 
algorithm A generated unrealistic vascular length in some minor branches when CT image 
quality was not good. To overcome this limitation, algorithm B used a common standard 
length for minor branches. Algorithm B, which intentionally added resistance at the small-
vessel bifurcation, was shown to have higher accuracy than algorithm A. We speculate that 
further advances in machine learning techniques and hemodynamic calculations would 
enable a fully automated on-site CT-FFR.

The values observed in this study differed from the study’s assumptions. The dropout rate 
of 18% was higher than the expected rate of 15%. However, the final sample size of 151 
was comparable to that of previous studies.7,8 In addition, the prevalence of FFR ≤ 0.8 was 
higher than expected (52.3% and 31.5%, respectively). The accuracy of CT-derived FFR 
algorithm should depend on CCTA image quality. However, CCTA acquisition protocol 
was not controlled in this study, which may have had a deleterious effect on the algorithm’s 
accuracy. Finally, CT-FFR was calculated by the manufacturer, whereas the product was 
developed for on-site use cases. This was intended to minimize bias by blinding investigators 
who performed reference measurements (invasive FFR) to the study values (CT-FFR). Future 
studies should consider these factors.

We investigated the diagnostic performance of a novel CT-FFR algorithm in identifying 
ischemia-causing lesions. Its diagnostic accuracy was numerically greater than that of CCTA 
alone but did not meet the priori hypothesis. This study suggests the feasibility of automated 
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on-site CT-FFR, which can be performed within hours. The algorithm needs to be improved 
for clinical use, and future studies are required to confirm its performance.
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Supplementary Fig. 2
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