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Background: The reliability and diagnostic performance of deep learning (DL)-based automated T2 
measurements on T2 map of 3.0-T cardiac magnetic resonance imaging (MRI) using multi-institutional 
datasets have not been investigated. We aimed to evaluate the performance of a DL-based software for 
measuring automated T2 values from 3.0-T cardiac MRI obtained at two centers. 
Methods: Eighty-three subjects were retrospectively enrolled from two centers (42 healthy subjects and 
41 patients with myocarditis) to validate a commercial DL-based software that was trained to segment 
the left ventricular myocardium and measure T2 values on T2 mapping sequences. Manual reference T2 
values by two experienced radiologists and those calculated by the DL-based software were obtained. The 
segmentation performance of the DL-based software and the non-inferiority of automated T2 values were 
assessed compared with the manual reference standard per segment level. The software’s performance in 
detecting elevated T2 values was assessed by calculating the sensitivity, specificity, and accuracy per segment.
Results: The average Dice similarity coefficient for segmentation of myocardium on T2 maps was 
0.844. The automated T2 values were non-inferior to the manual reference T2 values on a per-segment 
analysis (45.35 vs. 44.32 ms). The DL-based software exhibited good performance (sensitivity: 83.6–92.8%; 
specificity: 82.5–92.0%; accuracy: 82.7–92.2%) in detecting elevated T2 values.
Conclusions: The DL-based software for automated T2 map analysis yields non-inferior measurements 
at the per-segment level and good performance for detecting myocardial segments with elevated T2 values 
compared with manual analysis.
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Introduction

Myocardial edema is associated with acute myocardial 
infarction, myocarditis, stress cardiomyopathy, cardiac 
sarcoidosis, and cardiac allograft rejection, and detecting 
it aids in diagnosing these diseases. Cardiac magnetic 
resonance imaging (MRI) with T2-weighted sequences 
can detect myocardial edema (1-3). Measuring T2 signal 
intensity in the myocardium using T2-weighted imaging is 
the conventional procedure for detecting myocardial edema 
(2,4). However, the ability of this technique to evaluate 
diffuse or subtle myocardial changes is limited because it 
requires a reference tissue such as remote myocardium or 
skeletal muscle (1,5). T2 mapping of the myocardium has 
emerged as a technique with better diagnostic accuracy 
than conventional T2-weighted imaging because it provides 
tissue-specific T2 values without requiring comparison with 
reference tissue values (1,3,6-9). T2 mapping techniques 
have advantages over conventional T2-weighted imaging 
for detecting myocardial edema and inflammation with 
superior diagnostic performance (3).

Measuring T2 values in T2 mapping sequence requires 
manual segmentation of the ventricular myocardium. 
However, manual segmentation is time-consuming, and 
its accuracy relies on the observer’s experience (10-12). 
The ability to automatically perform segmentation should 
improve the reproducibility and conveniency of measuring 
T2 values. Recent developments in deep learning (DL) 
models have made automated T2 map analysis possible, but 
performance evaluations of automated T2 measurements 
in the left ventricular (LV) myocardium are rare. One study 
recently reported that convolution neural network-based 
automated T2 measurements exhibited good agreement 
with manual measurements (11). However, these results 
were obtained with a single 1.5-T MRI scanner at a single 
center. To date, the reliability and diagnostic performance 
of automated T2 measurements using multi-institutional 
datasets obtained with multiple 3.0-T scanners have not 
been investigated.

The purpose of our study is to evaluate the performance 
of a commercial DL-based software for automated T2 
measurements from 3.0-T cardiac MRI scans of healthy 
subjects and patients with myocarditis at two centers.

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 

approved by the institutional review boards of Severance 
Hospital and Dongsan Hospital, and the informed consent 
was waived for this retrospective analysis, except for healthy 
volunteers from Dongsan Hospital who provided the 
written informed consent for publication. Additionally, the 
informed consent from healthy volunteers at Severance 
Hospital was obtained during a prospective study (13), 
therefore, the informed consent for this retrospective 
analysis was also waived.

Subjects

We validated a commercial DL-based, automated cardiac 
MRI analysis software by Myomics (Phantomics, Inc., Seoul, 
Korea) by retrospectively including consecutive subjects 
who met the following eligibility criteria (Figure 1): (I) adults  
(age ≥19 years) who underwent cardiac MRI between 
October 2018 and May 2021 at center 1 and between 
March 2020 and June 2021 at center 2; (II) myocarditis was 
suggested by cardiac MRI and clinical findings. Diagnoses of 
myocarditis were based on diagnostic criteria recommended 
by the European Society of Cardiology Working Group 
for myocardial and pericardial diseases (6,14). Patients with 
myocarditis had one or more of the clinical presentations 
(e.g., acute chest pain) and one or more of the diagnostic 
criteria (e.g., electrocardiographic changes, elevated 
troponin level, functional abnormalities on cardiac imaging, 
or imaging abnormalities on cardiac MRI) or two or more 
diagnostic criteria. Cardiac MRI abnormalities suggesting 
myocarditis were based on the Lake Louise criteria (15). We 
also included 42 healthy volunteers who underwent cardiac 
MRI at either center (13). Subjects were excluded if the 
quality of the T2 map images was too poor to allow T2 map 
analysis for the entire myocardial segment. Subjects were 
included if image artifacts were present in only a portion of 
myocardial segments. In total, 42 subjects (29 subjects from 
center 1 and 13 from center 2) were enrolled in the normal 
group. The myocarditis group consisted of 31 subjects from 
center 1 and 10 from center 2, for a total of 41 myocarditis 
patients.

Sample size calculation

The primary endpoint of our study was the difference 
between automated T2 values and manual reference T2 
values. As there are no standardized criteria for non-
inferiority analysis regarding automated T2 measurements, 
the non-inferiority margin was set by focusing on the 



Kim et al. DL for automated CMR T2 map analysis6752

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6750-6760 | https://dx.doi.org/10.21037/qims-23-375

software’s performance for discriminating between normal 
and abnormal by automated measurement. According to 
the guidelines, the upper and lower ranges of normal values 
are defined by the mean ±2 standard deviations (SDs) of 
normal data (3). The SD of T2 relaxation times in healthy 
subjects ranged from 1.2 to 5.1 ms in a meta-analysis; 
thus, the non-inferiority margin for our study was chosen 
conservatively to be 2.4 ms based on the smallest reported 
SD (16). The sample size was determined to be a minimum 
of 14 subjects per group (normal and myocarditis) based 
on a non-inferiority margin of 2.4 ms that would achieve 
a type I error with alpha =0.025 and power =80%. The 
non-inferiority margin and sample size calculation were 
determined only to compare automated T2 values and 
manual reference standard T2 values, not to calculate the 
sensitivity and specificity.

Cardiac MRI acquisition

Cardiac MRI examinations were performed at each 
institution with a 3-T system [Prismafit (Siemens 
Healthineers, Erlangen, Germany) for center 1 and Vida 
(Siemens Healthineers) for center 2]. Quantitative T2 
mapping imaging was performed prior to contrast media 

injection with a T2-prepared steady-state free precession 
(SSFP) pulse sequence along identical short-axis planes. T2 
mapping images were acquired at the end-diastolic cardiac 
phase with the breath-hold technique, a slice thickness 
of 8 mm, an inter-slice gap of 10 mm, a field of view of 
approximately 380×380 mm2, and in-plane resolution of 
1.9 mm (Table S1). T2 maps were created with systems 
provided by the MRI manufacturer.

LV function and mass were assessed by acquiring short-
axis images of the LV using a cine balanced steady-state 
free-precession sequence (17). Three short-axis modified 
look-locker inversion-recovery (MOLLI) images at the 
base, mid-cavity, and apex were acquired for native T1 
mapping (1,17). A total dose of 0.1 mmol/kg gadolinium 
agent was then injected. Late gadolinium enhancement 
(LGE) imaging was acquired 10 min after contrast injection. 
Subsequently, post-contrast MOLLI T1 mapping was 
obtained for T1 determination from the exact location used 
for native T1 mapping.

Cardiac MRI analysis

Cardiac MR images were anonymized and analyzed 
independently by two experienced observers (cardiac 

Figure 1 Flow chart of included subjects. MRI, magnetic resonance imaging.

Adults underwent cardiac MRI from October 
2018 to May 2021 in center 1  

(n=1,760)

Cardiac MRI finding and clinical findings 
suggested myocarditis in center 1  

(n=32)

Adults underwent cardiac MRI from March 
2020 to June 2021 in center 2  

(n=154)

Cardiac MRI finding and clinical findings 
suggested myocarditis in center 2  

(n=10)

Exclusion in center 1 (n=1):
•  Poor quality of cardiac MRI for 

T2 map analysis

Study population (n=83)
•  Center 1 (n=60)
•  Center 2 (n=23)

Myocarditis group in center 1 (n=31)
Myocarditis group in center 2 (n=10)

Healthy volunteers in center 1 (n=29)
Healthy volunteers in center 2 (n=13)
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radiologists with 9 and 6 years of cardiac MRI experience) 
who were blinded to the automated T2 analysis results and 
clinical information, to establish the reference standard.

T2 mapping images were analyzed using commercial 
so f tware  ( cv i42  image  ana lys i s  so f tware ,  Circ le 
Cardiovascular Imaging Inc., Calgary, AB, Canada). The 
manual segmentation of the T2 map was evaluated by the 
slice. Per segment T2 values were reported according to the 
American Heart Association 16-segment model. Per slice or 
per patient T2 values were calculated as the mean T2 value 
of each segment. Cardiac MRI images of other sequences 
(e.g., T1 maps or LGE images) were evaluated for the 
presence of imaging abnormalities to assess myocarditis 
based on the Lake Louise criteria.

For the assessment of interobserver agreement, T2 
mapping images were analyzed by a third observer (a board-
certified cardiac radiologist). She independently segmented 
the LV myocardium of using the same software (cvi42) and 
was blinded to the reference standards. 

DL models for myocardium segmentation on T2 maps

Automated analysis of T2 maps was performed using 
Myomics (Phantomics), which is a DL-based, automated 
cardiac MRI analysis software (Figures 2,3). The DL model 
was developed using T2 map images as input. The details of 
the DL model are described in the supplementary methods 
(Appendix 1). Briefly, the training and testing datasets for 
the DL model included 586 cardiac MRI examinations 
from center 1 that were acquired using a 3.0-T MRI system 

(Prismafit, Siemens Healthineers).

Data analysis

The primary endpoint of our study was to determine 
whether automated T2 values were non-inferior to 
manual reference T2 values in a per-segment analyses. 
The secondary endpoints were to analyze segmentation 
performance using the Dice similarity coefficient (DSC) 
and to evaluate the diagnostic performance of the DL-
based software for detecting abnormal T2 segments in 
a per-segment analysis by calculating the sensitivity and 
specificity.

Segments with poor quality images due to severe artifacts 
or failure of automated segmentation were excluded from 
diagnostic performance analysis. An elevated (abnormal) T2 
value was defined as a T2 value higher than two SDs above 
the mean T2 value for each slice in the normal group (11,16).

Statistical analyses

R software (version 4.1.2; R Foundation for Statistical 
Computing, Vienna, Austria) with R packages “lmerTest”, 
“rmcorr”, and “DescTools” and SPSS software (version 
25.0, IBM Corp., Armonk, NY, USA) were used for 
statistical analyses. The independent t-test and chi-square 
test were used to compare participants’ demographics 
between centers. For primary endpoint, automated and 
manual reference T2 values were compared per segment 
using a linear mixed model with the center and type of 

Figure 2 Screenshots of the program for automatic segmentation (green circle and red circle in the left column indicating the epicardial 
and endocardial contours, respectively) and measurement of T2 values in left ventricular myocardium at a mid-slice in a myocarditis group 
patient from center 1.

120 ms 

0 ms

160

40

H
igh

Low
N

orm

5249
49

45

47

52

52

48 8
2

3
9

5

6
7

13 12

44

14 16

15 11

52

51

50

53

49
49

49

10

4

T2 [ms]

[2/3] T2Map_FLASH_SAXs_MOCO_T2

T2 abnormality map

MID

https://cdn.amegroups.cn/static/public/QIMS-23-375-Supplementary.pdf


Kim et al. DL for automated CMR T2 map analysis6754

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6750-6760 | https://dx.doi.org/10.21037/qims-23-375

measurement (automated or manual) as the fixed effect and 
the patient as the random effect. The interaction between 
center and the type of measurement was added to the 
model to test whether the differences in T2 values between 
the automated and reference were different between two 
centers. The upper limit of the 95% confidence interval (CI) 
of the difference was used to judge non-inferiority. Pearson 
correlation, linear regression, and Bland-Altman analyses 
were used to analyze the correlation and agreement between 
reference and automated T2 values in the per-segment 
analysis. DSC was compared between slice location, (apex, 
mid, base), sex, and disease group using one-way analysis 
of variance with the Bonferroni correction or independent 
t-test. Inter-observer agreement and the agreement 
between the observer and automated measurement for T2 
values were assessed using Bland-Altman analyses. Logistic 
regression with a generalized estimating equation was used 
to assess sensitivity, specificity, and accuracy of DL-based 
software for detection of segments with elevated T2 value 
per segment, compared to reference T2 values. P values 
<0.05 were considered statistically significant.

Results

Clinical characteristics

A total of 83 subjects were enrolled from two centers  
(41 males; mean age, 41.7±15.8 years; 42 in the normal 
group and 41 in the myocarditis group). The demographics 
are summarized in Table 1 and Table S2. There was a 
significant difference in the proportion of males and age 
between the two centers (P<0.05). The proportion of 
patients with myocarditis was not significantly different 
between the two centers (P>0.05). Cardiac MRI results of 
myocarditis group are provided in Table S3.

Performance of DL-based automated T2 analysis software

Automated myocardial segmentation failed in 16 segments 
of one subject in the myocarditis group from center 2 and 
in one segment of one healthy subject from center 1. The 
success rate for automated segmentation of the T2 map was 
97.6% (81 of 83) per patient and 98.7% (1,311 of 1,328) per 
segment.

Figure 3 Illustration of 2D U-Net architecture. The network consists of a contracting path and an expanding path. Yellow and gray 
represent 2D convolution layers, and green and orange represent max pooling layers. The yellow layers in the contracting path utilize 
down-scaling convolutions, while the yellow layers in the expanding path use up-scaling convolutions. The green of the contracting path is 
concatenated to the expanding path for skip connections. The gray layer utilizes a sigmoid activation function to obtain the segmentation 
map. 2D, two-dimensional.
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Comparisons of automated and reference T2 values are 
summarized in Table 2. The linear mixed model showed that 
patterns of difference in automated and reference T2 values 
were dissimilar between center 1 and center 2 (P value  
for interaction =0.031). Automated and reference T2 
values per segment were 45.35 and 44.32 ms, respectively, 
at center 1 and 44.09 and 42.35 ms at center 2. The upper 
limit of the 95% CI of the difference was smaller than the 
predefined non-inferiority margin (2.40 ms) at center 1 
(1.38 ms) and center 2 (2.18 ms), suggesting that automated 
T2 measurement is non-inferior to manually measured T2 
values. Automated and reference T2 values were positively 
correlated at center 1 (R=0.831, slope =0.893) and center 2 
(R=0.689, slope =0.678) for per-segment analyses (Figure 4). 
Bland-Altman plots of automated and reference T2 values 
showed a mean bias ± 95% limits of agreement of 1.03±6.34 

and 1.70±6.76 ms at center 1 and center 2, respectively 
(Figure 4).

The mean DSC for LV myocardium segmentation on T2 
maps was 0.844 (range, 0.355 to 0.971; Figure 5). The DSC 
was higher at center 1 than center 2 (0.852 vs. 0.823). DSC 
values were significantly different between slice levels. DSC 
was lower in apical slices than mid or base slices at both 
centers (Table 3, P<0.05). No other significant differences 
for DSC were observed according to sex and disease groups, 
except that the DSC values for females were slightly lower 
than those for males at center 1.

Interobserver agreement and agreement between 
the automated measurement and observer for the 
measurement of T2

Regarding the T2 value, mean bias between the reference 
standard and the observer was 0.08±2.09 and 0.60±9.54 ms 
at center 1 and center 2, respectively. Mean bias between 
the observer and automated measurement 1.12±6.27 and 
2.37±11.38 ms at center 1 and center 2, respectively.

Diagnostic performance for detecting elevated T2 value

A normal range of T2 values was defined for each slice level 
(Table S4) from reference T2 values of the normal group. 
T2 values for 17 segments from 2 subjects were excluded 
from diagnostic performance analysis due to segmentation 
failures, and 25 segments from 4 subjects were excluded due 
to poor quality images with severe artifacts (Tables S5,S6). 
The sensitivity, specificity, and accuracy of automated T2 
analysis for detecting elevated T2 values per segment, 
compared to manual reference values, were 92.8% (193 
of 208), 92.0% (668 of 726) and 92.2% (861 of 934), 

Table 1 Clinical characteristics of the study population

Characteristics
Total  

(n=83)
Center 1 
(n=60)

Center 2 
(n=23)

P value*

Sex, n (%) 0.006

Male 41 (49.4) 24 (40.0) 17 (73.9)

Female 42 (50.6) 36 (60.0) 6 (26.1)

Age (year) 41.7±15.8 44.7±16.3 33.8±11.4 0.004

BMI (kg/m2) 23.2±3.6 22.9±3.7 24.0±3.2 0.220

Group, n (%) 0.504

Normal 42 (50.6) 29 (48.3) 13 (56.5)

Myocarditis 41 (49.4) 31 (51.7) 10 (43.5)

Data are presented as the number of subjects (percentage) or 
mean ± SD. *, for comparison between two centers. BMI, body 
mass index; SD, standard deviation.

Table 2 Comparison of automated and manually measured T2 values (ms) per segment analysis

Center Group
Automated  

T2 value* (ms)
Reference T2 value from 

manual measurement* (ms)
Difference* P value

Center 1 Total 45.35 (44.30, 46.40) 44.32 (43.27, 45.37) 1.03 (0.68, 1.38) <0.001

Normal 43.06 (41.90, 44.22) 41.92 (40.76, 43.08) 1.15 (0.67, 1.62) <0.001

Myocarditis 47.56 (46.43, 48.70) 46.64 (45.50, 47.78) 0.92 (0.46, 1.38) <0.001 

Center 2 Total 44.09 (42.68, 45.51) 42.35 (40.95, 43.77) 1.74 (1.29, 2.18) <0.001

Normal 42.57 (40.84, 44.30) 40.42 (38.69, 42.15) 2.16 (1.44, 2.87) <0.001

Myocarditis 46.02 (44.03, 48.01) 44.87 (42.91, 46.85) 1.14 (0.29, 1.99) 0.009 

*, estimated mean with two-sided 95% confidence interval.

https://cdn.amegroups.cn/static/public/QIMS-23-375-Supplementary.pdf
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Figure 4 Scatterplots (upper panel) and Bland-Altman plots (lower panel) of automated and reference T2 values from per-segment analyses 
at center 1 and center 2. The dots representing each segment in the Bland-Altman plot are displayed in different colors.

Figure 5 Representative manual and automatic segmentation results of left ventricular myocardium from T2 maps indicating the Dice 
similarity coefficient and pixel number at a mid-slice in a myocarditis group patient from center 1. The numbers in the x- and y-axes indicate 
the location information of the pixels.
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respectively, for center 1 and 83.6% (46 of 55), 82.5% (245 
of 297) and 82.7% (291 of 352), respectively, for center 2 
(Table 4).

Discussion

Our study compared automated T2 values determined by 
a DL-based software to reference T2 values determined 
by manual measurement per segment and evaluated the 

software’s performance in detecting elevated T2 values 
per segment. Our study shows that automated T2 values 
are non-inferior to reference standard T2 values at both 
centers. The segmentation performance of the automated 
software is high (DSC >0.8) at both centers. The DL-based 
software shows good performance (sensitivity: 83.6–92.8%; 
specificity: 82.5–92.0%; accuracy: 82.7–92.2%) in detecting 
elevated T2 values in the per-segment analysis.

Several studies have investigated DL-based algorithms 
for automated myocardium segmentation, primarily using 
T1 maps (18-22). Some studies used T1-weighted or T2*-
weighted images as the input of the DL algorithm (18,21), 
whereas our study used T2 map as the input. However, to 
our best knowledge, only one study reported automated 
segmentation and calculation of T2 values using myocardial 
T2 maps. A recent study reported the performance of a 
convolution neural network-based automated T2 analysis 
platform that was trained on T1 mapping data (11). The 
automated analysis yielded T2 values that had good 
agreement with manual measurements (R=0.75, slope 
=0.99 for the per-segment analysis). The study data were 
generated by a single 1.5-T MRI scanner at a single center 
and their study population consisted of patients with known 
or suspected cardiovascular disease referred for clinical 
cardiac MRI. Our study evaluated and demonstrated the 
utility of a DL-based model for calculating automated 
T2 values acquired with 3.0-T MRI in a study population 

Table 3 Dice similarity coefficients for automatic segmentation of LV myocardium (per segment analysis)

Variables
Total (n=246) Center 1 (n=180) Center 2 (n=66)

Mean ± SD P value Mean ± SD P value Mean ± SD P value

Total 0.844±0.090 – 0.852±0.081 – 0.823±0.107 –

Sex 0.068 0.001 0.640

Male 0.855±0.083 0.874±0.042 0.823±0.116

Female 0.834±0.095 0.838±0.097 0.813±0.083

Group 0.482 0.581 0.924

Normal 0.840±0.095 0.849±0.091 0.823±0.101

Myocarditis 0.848±0.085 0.855±0.071 0.824±0.118

Slice <0.001 <0.001 0.014

Apex 0.805±0.124 0.002* 0.815±0.120 0.004* 0.777±0.134 0.465*

Mid 0.850±0.065 0.129† 0.861±0.045 0.523† 0.821±0.096 0.362†

Base 0.877±0.045 <0.001‡ 0.880±0.037 <0.001‡ 0.870±0.064 0.011‡

*, P value for comparison between the apex and mid slices; †, P value for comparison between mid and base slices; ‡, P value for 
comparison between the base and apex slices. LV, left ventricular; SD, standard deviation.

Table 4 Performance evaluation of automated identification of 
elevated T2 values per segment analysis

Center
Performance 

metric
Estimate (95% 

confidence interval)
Fraction

Center 1* Sensitivity (%) 92.8 (88.2, 97.4) 193/208

Specificity (%) 92.0 (89.7, 94.3) 668/726

Accuracy (%) 92.2 (90.3, 94.1) 861/934

Center 2† Sensitivity (%) 83.6 (76.6, 90.7) 46/55

Specificity (%) 82.5 (74.5, 90.5) 245/297

Accuracy (%) 82.7 (76.0, 89.4) 291/352

Data indicate the number of segments. *, 25 segments in four 
subjects were excluded due to poor quality images with severe 
artifact, and one segment in one subject was excluded due to 
failure to automatic segmentation; †, 16 segments in one subject 
were excluded due to failure to automatic segmentation.
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enrolled from two centers.  Our study population 
consisted of normal and myocarditis groups, in whom the 
clinical utility of T2 map analysis would be important. 
Furthermore, we preset the sample size and non-inferiority 
margin to assess the non-inferiority of automated T2 values 
relative to manual reference T2 values and used a linear 
mixed model considering clustered data for data analysis.

The DL-based model used in our study was trained 
on T2 mapping data from center 1 obtained at 3.0 T and 
yielded automated T2 values that were non-inferior to 
manual measurements at centers 1 and 2. However, the 
automated T2 values tended to be higher than the manual 
reference T2 values at both centers. We assumed that 
a larger segmentation mask for the myocardium might 
have led to higher T2 values because the T2 values of 
regions adjacent to the myocardium (e.g., lumen of the 
ventricles, pericardial fat, or pericardial effusion) tended 
to be higher than those of the myocardium. In addition, 
manual segmentation of the myocardium was performed 
by excluding regions with artifacts from the segmentation 
mask; however, these exclusions were not considered in 
automated segmentation using the DL-based model. The 
presence of artifacts is another possible reason for the 
differences between the manual reference and automated 
T2 values.

Some results from the DL-based model performance 
were different between the two centers. These differences 
between centers might be because center 2 had a smaller 
sample size than center 1 (60 in center 1, 23 in center 2),  
and the DL-based model was trained on a dataset from 
center 1. DL algorithm performance can degrade with 
slight variations in the input data. For example, a study 
of automated quantifications of myocardial scar burden 
using LGE sequence and cine sequences reported 
a lower correlation coefficient between manual and 
automated quantifications of scar burden and many failed 
segmentations in an external dataset (20). The results were 
presumed to be due to differences in patient characteristics, 
imaging parameters, and other implicit differences in 
implementing the imaging protocol (20).

In our study, the DSC was high (>0.8) at  both 
institutions, but the DSC in apex slices was significantly 
lower than that in mid or base slices, which is in accordance 
with the findings of a previous study (11). Furthermore, 
cases with poor segmentation performance (DSC <0.650) 
were observed only for apical slices in our study. Possible 
reasons include the relatively small area of myocardium in 
the apical slices, somewhat blurred segmentation margins 

due to the acute angle of the myocardium to the imaging 
plane, and poor image quality due to motion artifacts (18).

Our study showed that a commercial, DL-based 
automated algorithm exhibited a higher sensitivity (83.6–
92.8%) and slightly lower specificity (82.5–92.0%) for 
detecting elevated T2 values in a per-segment analysis than 
a previous study (sensitivity: 71.4%, specificity: 95.4%) (11). 
As discussed earlier, higher T2 values in automated analysis, 
possibly related with inclusion of adjacent structures on 
automated analysis and exclusion of regions with artifacts 
from manual segmentations may affect the high sensitivity 
but relatively low specificity of automated T2 map analysis 
for detecting elevated T2 values. Therefore, a careful review 
of the automated segmentation results is needed when 
using the automated T2 values obtained with the DL-based 
model in actual clinical practice.

The DL-based model in our study allows automatic 
segmentation of the LV myocardium and automated 
measurement of T2 values, which is a quick and convenient 
way to evaluate for myocardial edema without reducing 
accuracy. Therefore, the DL-based algorithm can be applied 
to other diseases that require myocardial T2 measurement.

There are several limitations to this study. First, all 
images were acquired using 3.0-T MRI scanners from 
a single manufacturer. Additional studies that apply the 
DL-based software to images obtained from scanners 
from different vendors and with different field strengths 
would facilitate the generalizability of the results. Second, 
although we performed sample size calculations for non-
inferiority testing, the sample sizes at each center and 
number of participating centers were small. Especially, 
the number of the normal, healthy subjects were relatively 
small to secure the local reference range. Because the 
differences between centers can be a concern for clinical 
implementation of DL algorithm, evaluating the DL-
based model with more subjects at more centers would 
help establish the utility of the DL-based measurement of 
T2 values. Third, we investigated the accuracy of the DL-
based software for detecting segments with elevated T2, 
but further studies investigating the utility of DL-based 
automated measurements in combined T1 and T2 mapping 
sequences may be helpful to expand the clinical application 
of the DL algorithm.

Conclusions

Automated T2 map analysis using a commercial DL 
algorithm yields non-inferior measurements and good 
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performance for detecting myocardial segments identified 
by elevated T2 values compared with manual analysis. 
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Supplementary

Appendix 1

Deep learning (DL) models for myocardium segmentation 
on T2 maps

Automated analysis of T2 maps was performed by Myomics 
(Phantomics), which is a DL-based, automated cardiac 
magnetic resonance imaging (MRI) analysis software.

Dataset

Datasets were retrospectively collected from cardiac MRI 
examinations obtained from July 2017 to July 2020 in  
center 1 to develop a DL-based automated T2 map 
segmentation model. Data used for the validation set 
were excluded from the training/test dataset. All cardiac 
MRI examinations were acquired using a 3.0-T MRI 
system (Prismafit, Siemens Healthineers). Subsequently, 
the collected dataset was examined to ensure that the 
whole heart was represented in the T2 map. Data were 
anonymized by removing personally identifying information 
and keeping only the MRI acquisition parameters. T2 
maps were acquired by the protocol for center 1. Finally, 
586 patients were included. The dataset was randomly split 
into two groups for training and testing of the DL model 
at a ratio of 8:2 (23). The total number of images for the 
training set was 1,587 (527 cases), and for the testing set, it 
was 177 (59 cases).

Manual annotation and label data

Manually drawn annotation was needed as ground truth 
(GT) to train the convolutional neural network (CNN) 
model and evaluate the performance of the automated 
segmentation. Commercial software (cvi42, Circle 
Cardiovascular Imaging Inc.) was used for the annotation. 
Experienced researchers drew the contours along the 
boundary between the left ventricular (LV) endocardium 
and epicardium in each image. The endocardial contour was 
drawn to include the papillary muscle and trabeculations. 
Once the initial annotation was finished, all contours were 
reviewed by experienced cardiac radiologists and edited if 
necessary. The reviewed contours were converted to label 
images as the GT for the learning and evaluation process. 
The annotation software output consisted of contour 
indexes in XML format. The x and y coordinates were 
converted to a point in a two-dimensional (2D) matrix. The 
regions outside and inside of the endocardial contour were 
filled with ones. The final format of label data was a 2D 

mask image in which the myocardium was labeled as 1 and 
the background as 0.

Pre-processing

All T2 map images imported into DICOM format went 
through a series of image processing steps, including 
restoring the resolution, cropping of the center region, 
and intensity normalization to minimize variations in 
size, resolution, and signal intensity. Images that were 
interpolated to double size during reconstruction were 
resized to the original matrix size. Specifically, images were 
resampled based on voxel resolution and oversampling, 
utilizing information from DICOM tags. All images were 
transformed to 256×256 after resampling, and then, a 
128×128 region was cropped as a region of interest (ROI) 
based on the center of the image. Signal intensity was 
normalized to values between 0 and 1. The label images 
underwent identical pre-processing.

Training the U-Net

A well-established CNN network, U-Net (24), was used to 
segment the myocardium from the T2 map images. Figure 3  
presents the network architecture of the 2D U-Net. 
The model has been trained to predict LV myocardium 
from the respective data. In training, data augmentation 
(rotation, flipping, and shifting) was applied to improve the 
performance and generalization of the model.

The models were constructed on the Keras DL library 
from Tensorflow (https://www.tensorflow.org/). Training 
and testing processes were implemented on an Ubuntu 
18.04 system with an Intel® Xeon Silver 4116 CPU @ 2.10 
GHz and Nvidia RTX 3090 graphics processing unit (GPU) 
(24 GB memory). An Adam optimizer with learning rate, 
1.0E−04, β1=0.9, β2=0.999, and batch size =32 was used to 
compile models. A Rectified Linear Unit (ReLU) was used 
for the activation function in the convolution layers, except 
for the last layer (softmax layer, simple binary thresholding). 
A Dice loss function was employed in training the models. 
The network was trained for 200 epochs and took 4–5 hours 
with a single GPU.

Post-processing

After training, the model infers the probability map onto 
the testing group images. The probability map reveals the 
possibility that each pixel belongs to a myocardium region. 

https://www.tensorflow.org/
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Post-processing algorithms were applied to the probability 
map. First, the 2D predictions were rescaled to the 
original size and resolution. When multiple disconnected 
components were present in the prediction image after the 
rescaling procedure, the largest component was considered 
as the myocardial component was maintained in the 
probability map. The other disconnected components were 
considered noise and removed from the probability map.

Evaluation of the model

The Dice similarity coefficient (DSC) between the GT 
and prediction map was to evaluate the performance of the 
trained model. The DSC is defined as follows: given two 
sets, X and Y, DSC, 2|X ∩ Y|/(|X| + |Y|). Prediction 
maps were generated using the test set by model inference 
and post-processing. The DSC of each image was calculated 
using the prediction map and GT. The mean DSC of the 
T2 segmentation model from the test set (177 images in  
59 cases) was 0.836.

Automatic analysis and reporting

The measured myocardial T2 values were expressed as 16 
American Heart Association segments in the form of a bull’s 
eye map. For each slice, three reference points were utilized: 

the center of mass of the LV endocardial contour and two 
right ventricular insertion points (RVIPs). The generation 
of the bull’s eye map was facilitated by a rule-based 
algorithm within the software. This algorithm automatically 
extracted the RVIP by employing binary masks of the LV 
myocardium and the right ventricular blood pool, which 
had been segmented using artificial intelligence techniques. 
By applying a polar coordinate transformation to these 
masks and utilizing the geometric information obtained 
from the transformed masks, the algorithm was able to 
detect the RVIP.
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Table S1 Acquisition parameters for T2 mapping sequences

Parameters Center 1 Center 2

Pulse sequence T2-prepared, single-shot TrueFISP T2-prepared, single-shot turbo flash

Thickness (mm) 8 8

TR/TE (ms) 175.89/1.33 230.9/1.25

Flip angle (°) 12 12

Bandwidth (Hz/px) 1,200 1,184

Matrix 192×132 192×144

Field of view (mm) 380×380 380×380

GRAPPA factor 2 2

TR preparation time (ms) 0, 30, 55 0, 35, 55

TrueFISP, true fast imaging with steady-state precession; TR, repetition time; TE, echo time; GRAPPA, generalized autocalibrating partial 
parallel acquisition.
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Table S2 Clinical characteristics of the normal group and myocarditis group

Characteristics
Total  

(n=83)

Center 1 (n=60) Center 2 (n=23)

Normal (n=29) Myocarditis (n=31) P value Normal (n=13) Myocarditis (n=10) P value

Sex, n (%) 0.464 0.002

Male 41 (49.4) 13 (44.8) 11 (35.5) 13 (100.0) 4 (40.0)

Female 42 (50.6) 16 (55.2) 20 (64.5) 0 (0) 6 (60.0)

Age (years), mean ± SD 41.7±15.8 48.0±15.2 41.6±16.9. 0.129 33.5±8.4 34.3±14.9 0.866

BMI (kg/m2), mean ± SD 23.2±3.6 22.7±2.6 23.0±4.5 0.770 24.8±2.9 22.9±3.3 0.157

BMI, body mass index; SD, standard deviation.

Table S3 Cardiac MRI results of myocarditis group

Variables Center 1 (n=31) Center 2 (n=10)

Left ventricular ejection fraction (%) 48.8±14.3 46.4±14.6

Abnormality in T2-weighted imaging N/A 10 (100.0)

Elevated native T1 value 31 (100.0) 10 (100.0)

Elevated extracellular fraction 31 (100.0) 10 (100.0)

Presence of late gadolinium enhancement 31 (100.0) 9 (90.0)

Pattern of late gadolinium enhancement Subepicardial 23, mesocardial 9, 
subendocardial 7, transmural 3, patchy 3

Subepicardial 5, mesocardial 1, 
subendocardial 2, transmural 3

Presence of pericardial effusion 27 (87.1) 5 (50.0)

Presence of pleural effusion 11 (35.5) 4 (40.0)

Unless indicated, data are presented as the number of subjects (percentage) or mean ± SD. MRI, magnetic resonance imaging; N/A, not 
available; SD, standard deviation.

Table S4 Reference T2 values (ms) in the normal group

Group
Base Mid Apex

Mean (SD) Upper limit Mean (SD) Upper limit Mean (SD) Upper limit

Center 1 39.88 (2.15) 44.18 41.81 (3.33) 48.46 44.65 (4.39) 53.42

Center 2 39.67 (2.55) 44.76 40.42 (3.12) 46.66 41.54 (3.24) 48.02

Total 39.82 (2.28) 44.37 41.37 (3.32) 48.01 43.66 (4.30) 52.27

SD, standard deviation.
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Table S6 Number of myocardial segments or patients with elevated T2 values using reference measurements

Reference
Basal Mid Apex Per patient

T2 high Total T2 high Total T2 high Total T2 high Total

Center 1

Normal 5 170 6 169 4 112 11 29

Myocarditis 107 180 68 180 18 124 27 31

Center 2

Normal 3 78 3 78 2 52 3 13

Myocarditis 29 60 17 60 10 40 9 10

Total

Normal 8 248 9 247 6 164 14 42

Myocarditis 136 240 85 240 28 164 36 41

25 segments in 4 subjects were excluded due to poor quality images with severe artifacts.

Table S5 Number of myocardial segments or patients with elevated T2 values using automated measurements

Automated
Basal Mid Apex Per patient

T2 high Total T2 high Total T2 high Total T2 high Total

Center 1

Normal 19 170 12 169 9 111 17 29

Myocarditis 116 180 77 180 18 124 27 31

Center 2

Normal 16 78 9 78 9 52 7 13

Myocarditis 34 54 21 54 9 36 9 10

Total

Normal 35 248 21 247 18 163 24 42

Myocarditis 150 234 98 234 27 160 36 41

17 segments in 2 subjects were excluded due to segmentation failures, and 25 segments in 4 subjects were excluded due to poor quality 
images with severe artifacts.


