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Abstract: Catastrophic forgetting, which means a rapid forgetting of learned representations while
learning new data/samples, is one of the main problems of deep neural networks. In this paper, we
propose a novel incremental learning framework that can address the forgetting problem by learning
new incoming data in an online manner. We develop a new incremental learning framework that
can learn extra data or new classes with less catastrophic forgetting. We adopt the hippocampal
memory process to the deep neural networks by defining the effective maximum of neural activation
and its boundary to represent a feature distribution. In addition, we incorporate incremental QR
factorization into the deep neural networks to learn new data with both existing labels and new labels
with less forgetting. The QR factorization can provide the accurate subspace prior, and incremental
QR factorization can reasonably express the collaboration between new data with both existing
classes and new class with less forgetting. In our framework, a set of appropriate features (i.e., nodes)
provides improved representation for each class. We apply our method to the convolutional neural
network (CNN) for learning Cifar-100 and Cifar-10 datasets. The experimental results show that
the proposed method efficiently alleviates the stability and plasticity dilemma in the deep neural
networks by providing the performance stability of a trained network while effectively learning
unseen data and additional new classes.

Keywords: image processing; incremental learning; convolutional neural network; deep learning;
artificial intelligence; compressed sensing

1. Introduction

Recent incremental learning research has focused on class-wise incremental
approaches [1–5]. Most class-wise incremental learning is adopting batch-type learning
for each class incremental step. Whereas, in the case of humans, incremental learning is
performed in an online way for each datum. For instance, whenever a human learns a
concept, he or she does not need a bunch of pictures, but only needs to carefully look
over an image, and experience grows through time through such a process. Not only in
the human-like model, but in many application areas of industry, data are provided in a
real-time manner such as streaming applications. However, recent class-wise incremental
learning methods cannot solve such problems. For the cases of such long periodic incre-
mental learning, we call it lifelong learning [6]. In more practical situations, incremental
learning should be lifelong because, in the entire lifespan, it is hard to avoid meeting totally
new input compared to the already trained data. The lifelong learning scenario assumes
the case of training a new task for a network that is already fully trained. Solving this
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kind of task always meets the catastrophic forgetting problem [7,8]. In this case, rather
than suppress the existing knowledge to learn the new task, it would be better to apply it.
Therefore, in this paper, we are trying to provide a new solution to the online datum-wise
incremental learning problem. We tried to reflect and avoid existing knowledge at the
same time when adding a new task functionality to the trained network by using QR
factorization. Recently, some new tensor subspace models have been proposed for accurate
information expression that can support the feasibility of our proposed model [9,10]. If we
do not know what the past data were, and what the future input will be, but only have a
trained model and a single input datum, the problem of training the model becomes online
datum-wise incremental learning.

The incremental learning problem can be divided into two subproblems. The first
problem is how we can learn a new concept, i.e., how we can increase the number of output
classes. Second is how we can update pre-existing weights of the network incrementally
while avoiding catastrophic forgetting [7]. Our model tries to solve those two problems
simultaneously.

In neural networks, an incremental learning problem can be regarded as a process of
finding the appropriate weights and biases. A weight can be described by its shape and
magnitude. Therefore, we propose a novel method for selecting the biases and deriving the
magnitude and shape of the weights.

The entire structure of our proposed method is described in Figure 1. In our proposed
method, to get the shape of incremental weights, we use QR factorization, which is one of
the effective data compressive sensing methods [11]. For the bias selection and magnitude
calculation, we apply the new effective maxima and boundary concept. In real-world
situations, the activation of a node of a neural network is limited to a maximum value
because of the finite origin of an input. In this case, we define the possible maximum
outputs as effective maxima and its corresponding input as a center point. For the rectified
linear unit (ReLU) activation function [12], there is a zero-crossing point that is regarded as
the boundary, and this boundary can be controlled by selecting a bias value. In this way,
we can obtain an appropriate weight and bias in an incremental way.

Figure 1. Datum-wise online incremental factorization (DOI) for deep convolutional neural networks.
Extracted feature vectors and existing classification weights are used to generate the new weight and
bias for the new class using one sample image without backpropagation.
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2. Related Work

Catastrophic forgetting is an important problem in neural networks [7,8,13,14]. The
adaptive resonance theory (ART) [15] network is one of the popular models that was trying
to solve the stability–plasticity dilemma [16]. It has advanced to Fuzzy-ART [17] and grow-
ing fuzzy topology ART (GFTART) [18]. Only GFTART has class-dependent representation
ability using growing fuzzy topology. However, those models are not efficient for real-
world applications with complex datasets because of scalability limitations for large sets of
data in the real world. Another attempt is copied network approaches [19,20], in which one
tries to train a copied network by minimizing the difference between a pre-trained network
output and a copied network output for both a pre-trained task and a new task. Therefore,
they optimize two different objectives together to avoid the forgetting problem. In addition,
there are other approaches that are based on probabilistic implementations [21,22]. Those
methods are basically inspired by biological aspects of complementary learning in the
human brain. They model a posterior probability of an output layer using the Laplacian
approximation and use the Fisher information matrix as a constraint for selective weight up-
date to overcome the catastrophic forgetting problem. Recent incremental learning studies
changed the strict online-setting into mild class-wise incremental learning. LwF [2] trig-
gered this trend. Moreover, after iCarl [5], keeping some of the old data is allowed. We can
find several derivatives [1,3,4,23–26] using the exemplar concept of iCarl. Recently, there
are exemplar-free models that have been released [27,28]. Compared to the exemplar-based
models, those exemplar-free models used variants of the generative networks. However,
all of those methods are based on a lot of old and new batch datasets and, therefore, they
cannot be regarded as a datum-wise online incremental learning method. As a result, it is
not only insufficient for plasticity but also different from the human-like sample-by-sample
online incremental learning.

3. Methods

We use the pre-trained feature extractor network of VGG16 [29], which is trained with
ILSVRC2012 [30]. Therefore, we know that there are already 1000 trained classes. We start
incremental learning from this point.

3.1. Incremental QR Factorization for Weight Shape Derivation

Let ni denote the number of training images of the ith subject in a group of subjects;
consequently, when the total number of subjects is K, n = ∑K

i=1 ni. The ni column vectors
obtained from the ith subject comprise a matrix Ai, and training data matrix A is formed as

A = [A1, A1, · · · , AK] (1)

where
Ai = [ai,1, ai,2, · · · , ai,ni ] ∈ Rm×ni (2)

where ai,j is the ith subject’s jth training datum. In [31–33], it is assumed that any test image
lies in the subspace spanned by the training images belonging to the same class. That is,
any test sample x can find its associated class without its label information. Further, test
sample x is reconstructed through a linear combination of existing bases by

x = Aα (3)

Optimal α, which effectively reconstructs the target sample with other training samples,
can be obtained in various ways. In the case of the l1-minimization algorithm, the n-sparse
signal to reconstruct test sample x, is computed using

min
α∈Rn
||α||l1 (4)
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When m is large, solving Equation (4) via linear programming becomes computationally
too expensive. Wright et al. [32] and Yang et al. [33] used random matrix Φ ∈ Rd×m

(where d� m) and computed the vector that minimizes Equation (4), where Φx = ΦAα
or Φx − ΦAα ≤ ε when error tolerance ε > 0 is given. Introducing the random matrix
Φ ∈ Rd×m significantly reduces the computational complexity.

Because of the significant amount of computation incurred, various approaches, such
as [34], have been proposed to optimize l1-minimization. However, Shi et al. [31] adopted
l2-minimization instead to exploit its efficiency; l2-minimization is defined by

min
α∈Rn
||x− Aα||2l2 (5)

In contrast to l1-minimization, l2-minimization can be solved using a pseudo-inverse matrix.
In addition to this advantage, algorithms using l2-minimization can recover test samples
more clearly, thereby achieving more accurate performance with less computation.

α = (AT A)−1 Ax (6)

α = R−1QTx (7)

In Equation (5), optimized α can be computed via Equations (6) and (7), which are obtained
by solving an equation that equalizes Equation (5)’s derivative with zero. In the result,
Equation (5) can be replaced by Equation (6), and the pseudo inverse of A is also replaced
by the inverse of QR in Equation (7). The inverse matrix of R and Q can also be used to
compute optimal α, after computing it only once in the batch-training phase.

We can reconstruct x using A and α computed from Equation (7). If the test image
x is the same as one of the training images, the corresponding α value is activated as 1,
and other values go to zero. It is very similar to the one hot vector activation of neural
networks. Therefore, we can get the weight shape Ŵx of corresponding current input
sample x as follows:

R−1QT = [c1, c2, · · · , cn, cn+1] ∈ Rm×(n+1) (8)

Ŵx = cn+1 (9)

where m is the size of the weight, n is the number of old output, and cn+1 can be regarded
as the new incremented weight shape corresponding to input x. Here, we finally found the
weight shape Ŵx, which will be used to create a new class weight by collaborating with
another algorithm from Section 3.3.

The expression Q consists of orthogonal and normalized vectors, such as [e1, e2, · · · , en],
in which each ei is computed using

u1 = a1
u2 = a2 − proje1 a2

u3 = a2 − proje1 a3 − proje2 a3
...

un = an −∑n−1
j=1 projej an

(10)

and
ei =

ui
|ui|

(11)

where an is the nth training sample vector, and projej an is the projection of an in the ej
direction. In the result of this computation, vectors of Q are independent of each other.
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R consists of coefficient vectors [r1, r2, · · · , rn], which are for reconstructing the original
sample vectors; R is computed using

R =


< e1, a1 > < e1, a2 > < e1, a3 > · · ·

0 < e2, a2 > < e2, a3 > · · ·
0 0 < e3, a3 > · · ·
...

...
...

. . .

 (12)

Using Equations (10) to (12), Q and R matrices are the result of decomposition of A,
and they possess several important characteristics. First, Q is a unitary matrix with the
special characteristic QTQ = QQT = I. This means that the inverse matrix of Q is easily
computed by transposing Q. Second, R always has an upper triangular form. The inverse
of this upper triangular matrix can be calculated using Gauss–Jordan elimination. Although
Gauss–Jordan elimination is not the best for calculating an inverse matrix, it is efficiently
applied in the proposed algorithm. Using the above equations, QR decomposition is
sequentially computed for each column at once [35,36].

When new training samples are added, these inverse matrices have to be recomputed.
From above, we know that Q is a unitary matrix, with the inverse of Q the same as QT , and
R is an upper triangular matrix, whose inverse matrix can be calculated in simple iterative
fashion via Gauss–Jordan elimination. New data updating can be performed on the basis
of these two characteristics. We propose a simple and fast updating method that facilitates
incremental learning of new training samples. The matrix Q consists of orthonormal bases,
as represented in Equations (10) and (11). When new data are available, we can update Q
and R by simply inserting an additional column:

Qn+1 = [Qn, en+1] (13)

where en+1 is an orthonormalized vector from an+1 by Equations (10) and (11).
Further, because it is a unitary matrix, Q−1

n+1 can be obtained by transposing Qn+1.
This means that Q−1

n+1 can be updated from Q−1
n by adding just a row, eT

n+1; R−1
n+1 is also

updated from R−1
n by

r−1
k,n+1 = −

(
∑n

i=1 r−1
k,i ri,n+1

)
rn+1,n+1

(14)

r−1
n+1,n+1 =

1
rn+1,n+1

(15)

where r−1
i,j is matrix R−1’s element at the ith row and jth column. Equations (14) and (15)

are derived from Gauss–Jordan elimination, which is commonly used to compute the
inverse matrix of the upper triangular matrix. To apply Equations (14) and (15), we need
Rn+1, which consists of [r1, r2, · · · , rn, rn+1]; r1, r2, · · · , rn are already known because they
were computed in the batch learning phase. Thus, only rn+1 is computed in the incremental
learning phase. This simple updating method significantly reduces the new data learning
time without a big loss of performance. In addition, the incremental QR factorization is to
preserve the accurate subspace feature so it is robust to the noisy inputs.

3.2. Center and Boundary of Feature Distribution

Our fundamental assumption is that the learning process of a neural network for each
node in a hidden layer represents a useful distribution of features according to a specific
class. In [21,22], the authors tried to convert the feature distribution to normal distribution
using Laplace approximation. The result contains approximation errors during the con-
version process. It is difficult to convert specific input with non-Gaussian distribution to a
normal distribution. Moreover, a bunch of datasets is needed for a new class for Laplace
approximation, which makes it unsuitable for datum-wise online incremental learning in
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real-world applications. Therefore, we redefine the center and boundary of a node in the
last hidden layer using its existing parameters.

A node activation consists of its input, weight, bias, and activation function. In
the case of ReLU, which is a biologically plausible activation function [37], the biggest
difference between normal distribution and node activation is the dynamic range. Unlike
the normal distribution output, which has limited dynamic range, the maximum value
of ReLU activation is infinite, ideally. However, in real situations, the ReLU output never
reaches an infinite value. There should be a finite maximum, and we define the finite
maximum as the effective maximum. The effective maximum has its corresponding input
as a weighted sum.

As shown in Figure 2, we describe the ReLU activation function by output y axis and
input axis of a weighted sum. Therefore, we redefine the center point X with respect to the
effective maximum point. The zero crossing point can be described by the negative value
of bias. In the case of normal distribution, we can define a receptive field with a threshold
point that gives a criterion of the decision boundary. A trained deep neural network has a
crisp decision boundary. The decision boundary can be represented by a hyperplane that
consists of weight and bias. The weight makes the angle or shape of the hyperplane, and
the bias allocates its position. For the ReLU activation, the decision boundary is the zero
crossing point of the function. Therefore, we can use the zero crossing point as a decision
boundary that is determined by the bias.

Figure 2. Center and boundary definition in the proposed framework. The center point corresponds
to the effective maximum point. In the case of incremental learning, the center point is the input
data point. The boundary is defined as the zero crossing point of ReLU. Even if the maximum value
of ReLU is ideally infinite, however, there should be a finite effective maximum point in practical
situations.

3.3. Bias Selection and Magnitude Derivation

A pre-trained deep neural network consists of weights and biases in a layered structure.
Therefore, even though we infer the existence of the effective maximum, we do not know
the exact value and the center point. In the training phase of incremental learning, we have
new data. The input can be considered as the center point of its corresponding particular
feature. When a pre-trained deep neural network fails to classify new data, then we create
a new feature that is more suitable for the new data. The first step of our framework creates
a new weight using the current corresponding class weight as the following equation.

W f = Wo + ∆W = Wo + AŴx (16)

where W f is a new weight, Wo is a pre-trained weight of the corresponding class of input
data, A is the scaling factor that decides the weight magnitude, ∆W is a weight update term,
and Ŵx is obtained for the proposed incremental QR factorization (Equation (9)). Since this
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learning framework should be operated in failure case of classification, the resultant output
value using W f should be higher than the wrong classification output value to get a correct
result. Therefore, we can infer the following equation to meet the desired condition:

y f = W f Xin + b f =
(

Wo + AŴx

)
Xin + bo + ∆b = Fmax + ε (17)

where Xin is input, bo is original input bias, b f is desired bias, and ∆b is the update term.
To get the correct output, the value of y f should be higher than the highest value of wrong
classification results, Fmax. Therefore, we define the target output y f by Fmax with a small
value of ε. Finally, we can get the following equation of magnitude factor A:

A =
Fmax + ε− yo − ∆b

Ŵx ∗ Xin
(18)

Note that yo is the original output, which can be calculated by Wo and bo. The two important
parameters are the scaling factor A and the bias update factor ∆b. If we assume a small
value of ε, other values are already known. A new decision boundary for new data can be
determined by W f and b f . The W f and b f depend on A and ∆b, as shown in Equation (17).
Since A can be determined by ∆b in Equation (18) if we set a correct bias update factor ∆b,
we can design a new decision boundary for the new data.

For the simplicity of understanding the effect of bias selection, let us assume that
yo = 0. This case is the initial stage of the new class increment. If ∆b = Fmax + ε, then
A = 0. Therefore, we can realize that the maximum value of ∆b is Fmax + ε, and if we
decrease the effect of ∆b, then the effect of A increases. We suggest the following bias
selection equation:

∆b = r(Fmax + ε), 0 < r ≤ 1 (19)

Algorithm 1 gives the pseudo-code for our proposed framework.

Algorithm 1 Datum-wise online incremental learning.
1: Xnew is new input dataset (or a stream of data)
2: T is a set of targets with respect to Xnew
3: Y is a set of classes
4: ΘY is a set of features
5: for i← 1 · · · |Xnew| do
6: ti ← ti ∈ T
7: if ti /∈ Y then
8: Wo ← zeros with size of θy
9: bo ← 0

10: Y ← Y ∪ {yI} where yi = ti = ReLU(Wox + bo)
11: θyi ← {Wo, bo}
12: ΘY ← ΘY ∪

{
θyi

}
13: end if
14: Fmax = argmax

y

{
p(xi|θy)

}
where xi ∈ Xnew, y ∈ Y

15: if Fmax 6= ti then
16: yo ← p(xi|θti )
17: Wo, bo ← θyo

18: W ′Y ← Θ′Y =
{

θy|θy 6= θti

}
19: Q′, R′ ← QR_ f actorization(W ′Y)
20: Q, R← Incremental_QR(Q′, R′, xi)
21: Ŵx = cti ← {c1, c2, · · · , cti} = R−1QT

22: A =
Fmax+ε−yo−∆b

Ŵx∗xi
where ε� 1, 0 ≤ ∆b < Fmax + ε

23: W f = Wo + AŴx
24: b f = bo + ∆b

25: θy f ←
{

W f , b f

}
where y f = ReLU(W f x + b f )

26: end if
27: end for
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4. Experiments and Results

In our experiment, even though the proposed method can be applied to any kind
of deep convolutional neural network, we apply our framework on VGGNet 16 layer D
model [29] as an example case. The VGGNet consists of 13 convolutional layers and 3 fully
connected layers. Our experiment is performed on the output features of the 15th layer
and the output weights of the network. We use pre-trained weights of the model for the
ILSVRC2012 [30] dataset. The ILSVRC2012 dataset consists of about one million images
of 1000 classes with a training time of a few weeks. If we apply new data and/or new
classes on this model and re-train the network by the conventional learning algorithm, the
catastrophic forgetting problem is very critical. Therefore, with the proposed datum-wise
online incremental learning, we will show that our framework overcomes the catastrophic
forgetting problem.

The proposed incremental learning includes not only the adaption of new data but
also extending the model for additional classes. For the experiments, we use another
image dataset, Cifar-100 [38], which includes 100 image classes, 500 images each, and
100 images each for the test. Additionally, we use Cifar-10 [38], which consists of 10 classes,
5000 images each for training, and 1000 images each for testing.

We used the hyperparameters of the proposed framework as ε = 0.1 and r = 0.1. The ε
is selected as about 5% of output value after checking network output. The ∆b is selected
as the boundary range to be 10% of the existing feature boundary. The performance is
measured by top-1 accuracy. We squashed all the data sizes to 224 × 224 to be the same as
the input dimension of VGGNet, 4096. All the feature extraction networks are frozen, and
only output layers are trained to correspond to our proposed learning method.

4.1. Comparison with Class-Wise Incremental Backpropagation

To show how the catastrophic forgetting problem is resolved by our proposed method,
we compare it with LwF [2], which is based on backpropagation and distillation learning.
We know there are more recent papers, such as iCarl [5] and its derivatives [1,3,4]. Even
though those studies give better results, they used old data, which may not be suitable
for lifelong incremental learning in real applications. However, since only the LwF does
not use old data, we regard the LwF as the most suitable in the comparison. For the LwF
setting, we use the learning rate of 0.0001 and warmup for the first epoch. The training
process is stopped at each maximum test output. The number of classes for each task is 1,
so it is a class-wise increment.

Figure 3 shows that our proposed datum-wise online incremental learning outper-
forms batch-type class-wise incremental learning with backpropagation. We also visualize
forgetting [39] of the proposed model. Final LwF accuracy is 2.4, our proposed model
accuracy is 31.48, and forgetting is 34.57.

Figure 3. Class-wise incremental learning comparison result on Cifar-100: (a) comparison between
the proposed model and LwF; (b) forgetting the proposed model.
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Figure 4 shows the confusion matrix of our proposed model. The result indicates that
our proposed method performed relatively well at predicting labels, even though a little
forgetting happened on old labels compared with recent labels.

Figure 4. Confusion matrix of class incremental learning on Cifar-100.

4.2. Random Input Comparison with One Epoch Backpropagation

For a more realistic experimental setting, let us assume that input data are random.
In this case, the proposed model increases the number of classes if it is needed or updates
existing classes. This process looks similar to conventional batch learning. The difference is
it uses one epoch only in the training process. Therefore, we can compare the performance
with one epoch training of the conventional method. For the conventional training, we set
the learning rate as 0.01, which gives the best performance, and warmup is also applied.

Figure 5 shows the test result with the one epoch training. Our proposed model outper-
forms conventional backpropagation. The results show that the proposed incremental QR
based learning is very efficient and powerful for datum-wise incremental online learning,
whereas all of the recent incremental learning methods are based on backpropagation. The
final accuracy of the proposed model is 43.8 and the maximum accuracy is 45.25, but the
accuracy by one epoch backpropagation learning is 10.43.
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Figure 5. Random input comparison of the proposed model with one epoch backpropagation on
Cifar-100.

4.3. Comparison with Replay Memory-Based Methods

There is a very recent paper, ER-MIR [23], that considers the online concept in continual
learning. The major difference with our model is they use replay memory. We compared
GEM [40], iCarl [5], and ER-MIR [23] with our proposed model on Cifar-10. For the paired
comparison, the proposed model is trained at the same setting condition as shown in
Section 4.1.

Table 1 shows that our proposed method without a replay memory to keep old data
outperforms conventional replay memory-based incremental learning algorithms for both
accuracy and forgetting. Note that M indicates memory size per class.

Table 1. Comparison with replay memory-based methods on Cifar-10. The bold numbers are the
best results.

Accuracy Forgetting
Methods

M = 20 M = 50 M = 100 M = 20 M = 50 M = 100

GEM [40] 16.8 17.1 17.5 73.5 70.7 71.7
iCarl [5] 28.6 33.7 32.4 49 40.6 40(5 iter)

ER-MIR [23] 29.8 40.0 47.6 50.2 30.2 17.4

DOI (Ours) 50.4 (M = 0) 48.9 (M = 0)

4.4. Computational Efficiency of the Proposed Incremental QR Factorization Compared with That
of Batch

Figure 6 shows that the incremental QR is almost twice as fast as the batch-updating
method. This fast learning time results from the efficient updating method used by the
proposed incremental QR compared to batch learning, which computes the entire process
repeatedly when new data are given. In particular, as the data size increases, the time
efficiency of the proposed incremental QR is considerably improved.
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Figure 6. Number of training samples versus time consumption for the batch and incremental QR
methods. (Incremental QR consumes less time than batch QR as the number of training samples
increases).

4.5. Hyper-Parameter Effect Analysis

We applied hyper-parameter change analysis on the random incremental experiment
setting of the proposed method.

4.5.1. Small ε

As we can see in Figure 7, a small change of ε does not significantly affect the final
result. Therefore, our selection of ε = 0.1 in the paper is acceptable.

Figure 7. Random incremental test final accuracy change corresponds to small ε changes.
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4.5.2. Bias Selection Parameter r

We changed r from 0.1 to 0.5 in 0.2 units. The case of r = 0.1 is most effective. Figure 8
indicates that as the effect of bias increases by increasing the r, the accuracy decreases.
Therefore, we see that the selection of r = 0.1 is correct.

Figure 8. Random incremental test final accuracy change corresponds to bias selection parameter
r changes.

5. Conclusions and Future Work

We propose a novel datum-wise online incremental learning algorithm that adopts
effective maxima and boundary concepts to find incremental weight magnitude and bias.
Our method adopts an incremental QR factorization algorithm to find incremental weight
shapes. By combining those new concepts in conventional deep neural networks, we
can find an appropriate weight and bias for the datum-wise online incremental learn-
ing. Our experimental results show that the proposed method outperforms conventional
backpropagation-based class-wise incremental learning methods. Current and recent
lifelong learning approaches assume the situation that the training data is already well
prepared for each different task. However, practical real-world applications are tougher
than the lab environment. Tasks such as face recognition, traffic surveillance, and even
any object recognition tasks, will have new persons, brand-new cars, and newly invented
objects. The major scope of our proposed model is to deal with these kinds of problems.
The limitation of our work is that it is hard to fairly compare the performances with the
class-wise incremental learning approaches. Since the proposed method is datum-wise, the
absolute performance cannot be superior to those recent class-wise approaches. In future
work, we will consider the mini-batch problem to meet practical necessities and also find a
way to update hidden representations in a similar way.
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