
Background: Acute ischemic stroke is a disease with multiple etiologies. Therefore, identifying the mechanism of acute ischemic 
stroke is fundamental to its treatment and secondary prevention. The Trial of Org 10172 in Acute Stroke Treatment classification is 
currently the most widely used system, but it often has a limitations of classifying unknown causes and inadequate inter-rater reli-
ability. Therefore, we attempted to develop a three-dimensional (3D)-convolutional neural network (CNN)-based algorithm for stroke 
lesion segmentation and subtype classification using only the diffusion and apparent diffusion coefficient information of patients with 
acute ischemic stroke. 
Methods: This study included 2,251 patients with acute ischemic stroke who visited our hospital between February 2013 and July 
2019. 
Results: The segmentation model for lesion segmentation in the training set achieved a Dice score of 0.843±0.009. The subtype classi-
fication model achieved an average accuracy of 81.9%, with accuracies of 81.6% for large artery atherosclerosis, 86.8% for cardioem-
bolism, 72.9% for small vessel occlusion, and 86.3% for control.
Conclusion: We developed a model to predict the mechanism of cerebral infarction using diffusion magnetic resonance imaging, 
which has great potential for identifying diffusion lesion segmentation and stroke subtype classification. As deep learning systems are 
gradually developing, they are becoming useful in clinical practice and applications. 
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INTRODUCTION 

Acute ischemic stroke has various causes based on the causative 
mechanism, consisting of large artery atherosclerosis (LAA), car-

dioembolism (CE), small vessel disease, stroke of other deter-
mined etiologies, or stroke of undetermined etiology. Classifica-
tion of acute ischemic stroke based on the cause is important for 
treatment and secondary prevention. The most widely used clas-
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sification system is the Trial of Org 10172 in Acute Stroke Treat-
ment (TOAST) classification [1,2]. However, this classification 
method shows moderate inter-rater reliability in classifying acute 
ischemic stroke and has a limitation of frequently classifying 
strokes as having an undetermined etiology [3]. To overcome this 
limitation, efforts are underway to develop a computerized algo-
rithm for acute stroke diagnosis; however, these have not shown 
sufficient results [4,5]. 

Various diagnostic methods such as brain imaging and heart 
tests are required to determine the causative mechanisms of acute 
ischemic stroke. Early diagnosis of the stroke subtype using this 
classification system can positively affect treatment, prognosis, 
and secondary prevention [1]. Diffusion-weighted magnetic reso-
nance imaging (MRI) is widely used to diagnose acute stroke. It 
has superior performance in detecting hyperacute lesions and 
very small ischemic lesions and in distinguishing chronic and 
acute lesions [6] compared to brain computed tomography (CT) 
and conventional MRI. Furthermore, simultaneous use of the ap-
parent diffusion coefficient (ADC) map and diffusion-weighted 
imaging (DWI) allow for more accurate distinction of the lesion 
of acute ischemic stroke, providing important information about 
the time window of the lesion [7]. The diffusion imaging lesion 
pattern, which provides useful information for the early diagnosis 
of acute ischemic stroke, has been reported to be closely related to 
the stroke subtype [8,9]. 

Various deep learning algorithms based on convolutional neural 
networks (CNNs) have been proposed for diagnosing acute isch-
emic stroke in brain MRI images [10-21]. These studies have 
shown that deep learning can detect stroke lesions more accurate-
ly than traditional machine-learning techniques and can extract 
meaningful features for severity evaluation or prognosis predic-
tion. Researchers have proposed lesion segmentation techniques 
for patients with acute ischemic stroke based on the U-Net archi-
tecture [16,17]. To efficiently exploit the contextual information 
of volumetric MRI data, Zhang et al. [18] proposed a stroke le-
sion segmentation technique using a three-dimensional (3D) ful-
ly connected-DenseNet. Although the aforementioned studies 
demonstrated that deep learning can classify patients with acute 
ischemic stroke via lesion segmentation, a classification technique 
for predicting the treatment mechanism of acute ischemic stroke 
has yet to be reported. In this study, we presented a 3D CNN-
based model for stroke lesion segmentation and subtype classifi-
cation using only DWI and ADC images from patients with acute 
ischemic stroke. 

METHODS 

Study population 
The participants were 2,251 patients with acute ischemic stroke 
who visited our hospital between February 2013 and July 2019. 
Information on acute ischemic stroke was compiled from a regis-
try. All patients with acute ischemic stroke were reviewed by at 
least three stroke specialists and classified according to the 
TOAST classification. There were 1,789 patients with LAA, CE, 
and small vessel occlusion (SVO), excluding stroke of other deter-
mined etiologies or stroke of undetermined etiology. Among 
them, 1,396 patients underwent DWI and ADC (Fig. 1). There 
were 608 patients with LAA, 441 with CE, and 359 with SVO. 
Among the healthy patients who visited the hospital during the 
same period, 400 who showed normal MRI findings at our clinic 
were included as controls. The patients’ sex, age, National Insti-
tutes of Health Stroke Scale score, and medical history, including 
stroke, hypertension, diabetes mellitus, and atrial fibrillation, are 
listed in Table 1. In the control group, brain images without clini-
cal information were used. Baseline characteristics were presented 
as frequencies (percentages). Continuous variables with normal 
distributions are presented as means ± standard deviation, where-
as variables with non-normal distributions are presented as medi-
ans (interquartile ranges).  

Imaging acquisition  
MRI was performed using various machines including 1.5 T 
(Achieva, Philips Healthcare) and 3.0 T (Ingenia CX, Philips 
Healthcare; Achieva, Philips Healthcare) scanners. The parame-
ters of the DWI sequence were as follows: repetition time, 2,500–
3,000 ms; echo time, 80 ms; slice thickness, 3–5 mm; intersection 
gap, 1 mm; field of view, 220 × 220 mm; matrix size, 256 × 256 

2,251 Patients registered in the Stroke 
Registry from 2013 to 2019

1,789 Patients classified as LAA or SVO 
or CE

393 Excluded
No DWI/ADC acquisition

LAA  
601 cases

CE  
437 cases

SVO
358 cases

Fig. 1. Study profile. LAA, large artery atherosclerosis; SVO, small 
vessel occlusion; CE, cardioembolism; DWI, diffusion-weighted 
imaging; ADC, apparent diffusion coefficient.
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(approximately 2 × 2 mm in-plane resolution); and b values, 0 and 
1,000 sec/mm2. Each apparent ADC map was generated auto-
matically using the manufacturer’s software. 

Data preparation 
To produce a “ground truth” reference standard for training and 
evaluating the subtype classification model, each patient was clas-
sified into four classes (LAA, SVO, CE, and Control) according 
to the TOAST classification system. Lesion areas in each DWI 
slide were manually annotated by two experienced neurologists 
using in-house annotation software. Finally, each lesion was 
cross-validated and labelled, with a final decision agreed upon by 
both raters. To address the data distribution and validation meth-
odology in our study, we adopted a 5-fold Stratified Cross-Valida-
tion approach. This ensures the proportionality of the class distri-
bution across each fold, which is crucial for maintaining the integ-
rity of the validation process given the imbalanced nature of our 
dataset. The preprocessing pipeline was meticulously designed to 
normalize and standardize the MRI images obtained from various 
vendors with different acquisition parameters. Each patient's MRI 
data comprising varying numbers of slices were resampled to a 
uniform 3D voxel size of 256 (H) ×  256 (W) ×  128 (D). This 
resampling is pivotal for aligning the spatial dimensions across all 
the datasets. To address the intensity variations due to different 
magnetic resonance (MR) parameters and scanner calibrations, 
we performed intensity normalization using the window center 
and width values provided in the digital Imaging and communica-
tion in medicine (DICOM) file metadata. This step adjusts the 
pixel intensity values to a standard scale, thereby enhancing the 
image comparability. Additionally, DWI, which inherently have 
varying numbers of slices owing to different scanning protocols, 
were standardized by selecting a fixed number of slices that best 

represented the essential features required for accurate segmenta-
tion. This uniform pre-processing approach ensures that subse-
quent segmentation algorithms operate on data that reflect con-
sistent anatomical structures and tissue characteristics, thereby 
enabling a more reliable and valid comparative analysis across all 
images. Practically, for each of the five folds, we allocated 60% of 
the data for training purposes, 20% for validation, and 20% for 
testing. This division was performed independently within each 
fold to confirm the generalizability and reliability of the model's 
performance. 

Lesion segmentation mode 
Our segmentation model, based on a 3D CNN called V-Net [22] 
is illustrated in Fig. 2. The model consists of an encoder that ex-
tracts feature maps from local 3D volumes and a decoder that pre-
dicts stroke lesions using feature maps. Because our model has a 
very deep architecture, we employed a residual block to alleviate 
the gradient vanishing and exploding problems. The residual 
block contains (1) a 3D convolutional layer with kernel size 
3 × 3 × 3 and (2) a residual skip connection and two 3D convolu-
tional layers with kernel size 3 × 3 × 3, each follo wing batch nor-
malization and a rectified linear unit, respectively. In the network 
encoder, residual blocks were utilized for feature extraction and 
max-pooling layers, with a stride of two to reduce spectral dimen-
sionality. In contrast, the decoder consists of up-convolutional 
layers with strides of two, followed by residual blocks after fea-
ture-map concatenation. Skip connections from the layers of 
equal resolution in the encoder provide high-resolution features 
to the decoder. A sigmoid activation layer was connected to the 
last layer of the decoder to calculate a probability map of the 
stroke lesions. 

The model was trained over 200 epochs with an Adam optimiz-

Table 1. Baseline characteristics of the study population according to stroke mechanism 
Variable Total LAA SVO CE
Number 1,396 601 358 437
Female 591 (42.3) 250 (41.6) 136 (38.0) 205 (46.9)
Male 805 (57.7) 351 (58.4) 222 (62.0) 232 (53.1)
Age (yr) 70±12 69±12 66±13 73±11
Delayed time (min) 101 (57–198) 118 (57–213) 152 (63.25–296) 85 (55–154)
Medical history
  Stroke 276 (19.8) 113 (18.8) 64 (17.9) 99 (22.7)
  Hypertension 895 (64.1) 416 (69.2) 214 (59.8) 265 (60.6)
  Diabetes mellitus 475 (34.0) 222 (36.9) 131 (36.6) 122 (37.9)
  Dyslipidemia 178 (12.8) 84 (14.0) 52 (14.5) 42 (9.6)
  Atrial fibrillation 327 (23.4) 9 (1.5) 2 (0.6) 316 (72.3)
NIHSS 5.67±5.72 4.96±4.99 3.02±2.13 8.81±7.11

Values are presented as number (%), mean±standard deviation, or median (interquartile range).
LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; NIHSS, National Institutes of Health Stroke Scale Rating.
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Fig. 2. Our network architecture for stroke lesion segmentation. Based on three-dimensional (3D) U-Net, the network learns the features 
based on a hierarchy framework starting from simple features such as edges and shapes to high-level features in the deeper levels. ADC, 
apparent diffusion coefficient; DWI, diffusion-weighted imaging; Conv, convolution; BN, batch normalization; ReLU, rectified linear unit;  
Up-conv, up-convolutional.

er, an initial learning rate of 1e-5, and a batch size of 8. The model 
was trained from scratch without using pretrained weights. We 
tested various loss functions such as weighted cross-entropy loss, 
L1 loss, and Dice loss; Dice loss achieved the best performance. 
Furthermore, to address the data scarcity problem, data augmen-
tation techniques such as rigid transformation, horizontal/vertical 
flip, Gaussian noise, and gamma correction were randomly trig-
gered in each training session. 

Subtype classification model 
As illustrated in Fig. 3, our classification model predicted the 
probabilities of the four classes: LAA, SVO, CE, and Control. For 
feature extraction, we adopted a residual block in the lesion-seg-
mentation model. In addition, to guide the network to focus on 
the lesions, feature maps were enhanced using the lesion predic-
tion results provided by the segmentation model. Specifically, the 
enhanced feature map Fenh is obtained by 

Fenh =  F ×  (1 + h(A)), � (1) 

where F and A are the feature maps extracted by each residual 
block and lesion segmentation result, respectively. h(·) is a bilinear 

interpolation to match the spatial resolutions between F and A. 
This attention mechanism significantly improves the classification 
performance of the model by guiding the network to focus on le-
sion areas to predict stroke subtypes. The model was trained over 
400 epochs with an Adam optimizer, an initial learning rate of 1e-
5, and a batch size of 4. Categorical cross-entropy loss was utilized, 
and the model was trained from scratch. We used a data-augmen-
tation technique to train the classification model. 

RESULTS 

Lesion segmentation model 
Our segmentation model for lesion segmentation in the training 
set achieved a Dice score of 0.891± 0.034. For the test set, our model 
resulted in a Dice score, precision, and recall of 0.843 ±0.009, 
0.842±0.012, and 0.844±0.017, respectively. Fig. 4 shows some ex-
amples of lesion prediction results compared with assessments by 
neurologists. Our segmentation model accurately predicted extreme-
ly small lesions. Most cases of failure occurred when the lesions 
had very poor contrast in the diffusion images, as shown in Fig. 5. 
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Fig. 3. Our network architecture for stroke subtype classification. To guide the network towards the lesion areas, we adopted the attention 
mechanism using the lesion segmentation result. ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; LAA, large artery 
atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism.

Stroke subtype classification model 
To underscore the benefits of leveraging segmentation data, we 
integrated an enhanced feature map into our stroke-subtype clas-
sification model. By applying an enhanced feature map informed 
by the segmentation results, the model obtains the spatial context 
that the raw images lack. This context allows the model to “see” 
beyond mere pixel intensity, recognizing patterns and structures 
pertinent to stroke subtype. 

This strategic modification led to a notable improvement in the 
performance metrics. Before integrating the segmentation infor-
mation, the average classification accuracy of the model is 71.1%. 
However, with the incorporation of an enhanced feature map, the 
accuracy significantly increased to 81.9%. This effect was evident 
across all subtypes, with accuracies of 81.6% for LAA, 86.8% for 
CE, 72.9% for SVO, and 86.3% for control. The enhanced feature 
map sharpens the model's ability to concentrate on lesion-specific 

areas, thereby refining the differentiation process between various 
stroke subtypes. 

Fig. 6 shows the confusion matrix obtained using the subtype 
classification model. Our model showed lower accuracy for SVO 
than for other subtypes, indicating that the model confused SVO 
with control cases owing to its poor analysis performance for 
small lesions. 

DISCUSSION 

This is the first study to perform subtype classification of stroke 
mechanisms by analyzing the patterns of acute ischemic stroke le-
sions through deep learning based on a 3D-CNN using DWI and 
ADC in patients with acute ischemic stroke. The main findings of 
this study are as follows. First, the 3D-CNN-based segmentation 
accuracy for acute ischemic stroke lesions was 0.843 based on the 
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Fig. 4. Prediction outcomes using our lesion segmentation model. In each panel, the images in the first and second rows are diffu-
sion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) slices, respectively. The third-row images are the “ground truth” 
labels annotated by two neurologists, while the fourth-row images show lesion areas predicted by our model. AI, artificial intelligence.

Fig. 5. Failure cases of our lesion segmentation model. Most cases 
have occurred when the lesions have extremely poor contrast. 
DWI, diffusion-weighted imaging; ADC, apparent diffusion coeffi-
cient; AI, artificial intelligence.

Dice score. Second, in terms of subtyping to classify the cause of 
acute ischemic stroke, the predicted degree of cause classification 
according to the TOAST classification, which is the “ground 
truth,” was confirmed to be 81.3% for LAA, 84.6% for SVO, and 
73.0% for CE. 

With technological advances, brain imaging plays a crucial role 
in diagnosing and identifying mechanisms underlying the devel-
opment of acute ischemic stroke according to technological ad-
vances [23]. Among the various MR sequences, DWI and ADC 
maps are useful tools for the early detection of acute ischemic le-
sions and for differentiating between stroke mimics and acute 
ischemic stroke [24]. Several previous studies have attempted to 
segment the infarction volume in acute ischemic stroke using arti-
ficial intelligence (AI). Various imaging patterns of acute ischemic 
stroke in DWI lesions correlate with pathogenic mechanisms. In 
the case of cardiac embolic stroke, acute stroke lesions on DWI 
often show single cortical/subcortical lesions or occur multiple 
times in various vascular branches. Multiple unilateral lesions in 
the anterior circulation are characteristic findings of arteriogenic 
embolism. Meanwhile, small infarction (2–20 mm in diameter) 
lesions observed in the deep acute ischemic white matter, basal 
ganglia, thalamus, and pons were highly associated with SVO 
[8,25]. We attempted to apply a doctor’s diagnostic process to de-
termine the cause of acute ischemic stroke based on the character-
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istic findings of brain MRI using AI. 
However, there are many limitations in predicting the patho-

genesis of acute ischemic stroke using only DWI/ADC maps. 
The TOAST classification system is the most widely used system 
for classifying acute ischemic stroke based on its pathogenesis. 
Clinical findings and the results of ancillary diagnostic studies, in-
cluding brain imaging and cardiac evaluation, were used to classify 
patients’ acute ischemic stroke mechanism [1]. Although widely 
use and popular, its overall inter-rater agreement is moderate. Its 
reliability is notably lower for small-vessel occlusion and strokes of 
undetermined causes, especially when compared to LAA and CE 
[3]. To overcome this, an improved classification method that ap-
plies a new diagnostic technique was used; nevertheless, it still has 
limitations [4,5,26,27]. In particular, acute ischemic stroke with 
unknown mechanisms, such as LAA, CE, SVO, and stroke of oth-
er determined etiologies, is known as cryptogenic stroke. It is ob-
served in approximately all the patients with acute ischemic stroke 
[28]. These cryptogenic strokes are often observed as embolic 
strokes, and are called embolic strokes of undetermined source 
(ESUS) [29]. There is a need to determine the mechanism of 
ESUS and provide proper treatment; however, a definitive meth-
od for achieving this objective remains elusive [30]. We conduct-
ed this study to diagnose acute ischemic stroke using a deep learn-
ing algorithm. To the best of our knowledge, this model is the first 
algorithm for identifying the mechanism of cerebral infarction in 

patients with ESUS. In the future, it will be necessary to create a 
multimodal algorithm that includes cerebrovascular imaging, lab-
oratory data, and cardiac tests, such as transthoracic echocardiog-
raphy, transesophageal echocardiography, and electrocardiogra-
phy. We expect to improve the model in this study. 

Our study introduces a novel approach to lesion segmentation 
and stroke subtype classification that significantly advances tech-
nology beyond previous methodologies [10-21]. Unlike tradi-
tional techniques [16,17] which process individual slides and 
therefore cannot utilize contextual information from adjacent 
slides, often resulting in diminished accuracy, our technique lever-
ages a 3D CNN with a deep residual network architecture. This 
allowed for stable learning and improved recognition of complex 
patterns across multiple slides, culminating in a high Dice score of 
0.845 in the test set. 

Moreover, our subtype classification model exhibited an aver-
age accuracy of 81.9%, which is a notable improvement over the 
existing models. This is achieved through an attention mechanism 
that utilizes the lesion information predicted by the segmentation 
model, focusing on key areas for accurate prediction. This not 
only identified the stroke subtype but also highlighted the specific 
regions the model analyzed to arrive at its conclusion.  

The integration of these advanced segmentation and classifica-
tion models is expected to have a substantial impact on medical 
AI applications that rely on 3D volumetric data, such as CT and 
MRI scans. Our approach sets a new precedent for accuracy and 
reliability in medical diagnostics, offering a comprehensive solu-
tion that outperforms previous single-slice-based techniques. 

This study has several limitations. First, the labeling of subtypes 
in the stroke prediction is unclear. Despite our meticulous process 
of employing the TOAST classification system and expert anno-
tations by two experienced neurologists, the subjective nature of 
clinical diagnoses presents the potential for inconsistency. The 
difficulty in standardizing labels across different raters and cases is 
an inherent limitation not only in our study, but also in the broad-
er context of machine learning applications in stroke subtype clas-
sification. This could result in variability, affecting the reliability of 
our model. Recognizing this limitation, we emphasize the need 
for continuous improvement in annotation methodologies and 
exploration of more objective measures in future studies to mini-
mize such discrepancies. Second, this study lacks external valida-
tion. Therefore, there may be a bias in this model, and it is neces-
sary to improve it by performing external validation in future 
studies. Third, this algorithm does not include images of cerebral 
infarction caused by causes other than LAA, CE, or SVO. To pre-
dict and diagnose these mechanisms, additional clinical data, such 
as cerebrovascular imaging, laboratory studies, and cardiological 

Fig. 6. Confusion matrix of our subtype classification model. Val-
ues are presented as number (ratio). 3D, three-dimensional; CNN, 
convolutional neural network; LAA, large artery atherosclerosis; 
CE, cardioembolism; SVO, small vessel occlusion.
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evaluation, are required in addition to DWI/ADC. In this study, 
the algorithm was only trained on three mechanisms that are 
known to be diagnosable or predictable by DWI patterns. There-
fore, it is limited in classifying cerebral infarction caused by other 
mechanisms. In our follow-up study, we plan to improve the algo-
rithm by including various types of clinical data. Fourth, this study 
is a case-control study. The study was based on a stroke database 
from a single center; hence, there is a possibility of selection bias 
in the selection of subjects. Therefore, it is necessary to overcome 
this limitation using multicenter data in subsequent studies. Final-
ly, this study was conducted using data collected from a single co-
hort, which limited our consideration of variations in the MR pa-
rameters. Therefore, the generalizability of our findings to datasets 
with different MR parameters may be limited. Specifically, our 
normalization approach based on Window Center and Window-
Width may not be applicable to other datasets with varying imag-
ing protocols. This limitation highlights the need for further re-
search using diverse MRI datasets to validate and refine our meth-
odology. Future studies should aim to incorporate data from mul-
tiple sources with varying MR parameters to ensure broader ap-
plicability and robustness of the findings. 

In summary, this study aimed to predict the pathogenesis of ce-
rebral infarction using only brain diffusion MRI and apply it clini-
cally. Using only the initial diffusion MRI information, we present 
a feasible model that predicts the mechanism of occurrence by ap-
plying an algorithm based on a 3D-CNN through deep learning. 
The diffusion lesion volume measurement and stroke subtype 
classification using our proposed method showed a strong cor-
relation with those performed by manual segmentation and sub-
type classification by professional neurologists. This study is sig-
nificant because it is the first to predict the mechanism of acute 
ischemic stroke by using diffusion MRI alone. In future studies, it 
will be necessary to develop a multimodal algorithm that includes 
not only diffusion MRI, but also other brain imaging modalities 
and clinical data to predict the exact pathogenesis of cerebral in-
farction. 

ARTICLE INFORMATION 

Ethics statement 
This single-center, retrospective case-control study was conduct-
ed in accordance with the Declaration of Helsinki. The study pro-
tocol was approved by the Institutional Review Board (No. 2023-
10-017), which waived the requirement for informed consent. 

Conflict of interest  
Moon Ku Han and Jeong-Ho Hong are editorial board members 

of the journal, but they were not involved in the peer reviewer se-
lection, evaluation, or decision process of this article. No other 
potential conflict of interest relevant to this article was reported.

Acknowledgments
This work was supported by funding from the Academic Re-
search Program of the Chungbuk National University in 2022. 

ORCID 
Baik-Kyun Kim� https://orcid.org/0000-0003-1544-7713
Seung Park� https://orcid.org/0000-0003-4667-3983
Moon-Ku Han� https://orcid.org/0000-0003-0166-387X
Jeong-Ho Hong� https://orcid.org/0000-0002-8235-9855
Dae-In Lee� https://orcid.org/0000-0001-8088-3007
Kyu Sun Yum� https://orcid.org/0000-0001-9815-7652

Author contributions  
Conceptualization: all authors. Methodology: BKK, SP, DIL, 
KSY. Formal analysis: BKK, SP, DIL, KSY. Data curation: BKK, 
SP, DIL, KY. Visualization: BKK, SP, DIL, KSY. Project adminis-
tration: BKK, SP, DIL, KSY. Funding acquisition: KSY. Writing–
original draft: BKK, SP, DIL, KY. Writing–review & editing: all 
authors. 

REFERENCES 

1. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, 
Gordon DL, et al. Classification of subtype of acute ischemic 
stroke. Definitions for use in a multicenter clinical trial. TOAST. 
Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; 
24:35-41. 

2. Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hen-
nerici MG. Classification of stroke subtypes. Cerebrovasc Dis 
2009;27:493-501. 

3. Meschia JF, Barrett KM, Chukwudelunzu F, Brown WM, Case 
LD, Kissela BM, et al. Interobserver agreement in the trial of org 
10172 in acute stroke treatment classification of stroke based on 
retrospective medical record review. J Stroke Cerebrovasc Dis 
2006;15:266-72. 

4. Goldstein LB, Jones MR, Matchar DB, Edwards LJ, Hoff J, Chi-
lukuri V, et al. Improving the reliability of stroke subgroup clas-
sification using the Trial of ORG 10172 in Acute Stroke Treat-
ment (TOAST) criteria. Stroke 2001;32:1091-8. 

5. Ko Y, Lee S, Chung JW, Han MK, Park JM, Kang K, et al. MRI-
based algorithm for acute ischemic stroke subtype classification. 
J Stroke 2014;16:161-72. 

6. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute 

https://doi.org/10.18700/jnc.23003992

Baik-Kyun Kim, et al. • Deep learning for prediction of stroke mechanism

https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.1159/000210432
https://doi.org/10.1159/000210432
https://doi.org/10.1159/000210432
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.07.001
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.07.001
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.07.001
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.07.001
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.07.001
https://doi.org/10.1161/01.str.32.5.1091
https://doi.org/10.1161/01.str.32.5.1091
https://doi.org/10.1161/01.str.32.5.1091
https://doi.org/10.1161/01.str.32.5.1091
https://doi.org/10.5853/jos.2014.16.3.161
https://doi.org/10.5853/jos.2014.16.3.161
https://doi.org/10.5853/jos.2014.16.3.161
https://doi.org/10.1002/ana.410370214


human stroke studied by whole brain echo planar diffu-
sion-weighted magnetic resonance imaging. Ann Neurol 1995; 
37:231-41. 

7. Lansberg MG, Thijs VN, O'Brien MW, Ali JO, de Crespigny AJ, 
Tong DC, et al. Evolution of apparent diffusion coefficient, dif-
fusion-weighted, and T2-weighted signal intensity of acute 
stroke. AJNR Am J Neuroradiol 2001;22:637-44. 

8. Wessels T, Wessels C, Ellsiepen A, Reuter I, Trittmacher S, Stolz E, 
et al. Contribution of diffusion-weighted imaging in determina-
tion of stroke etiology. AJNR Am J Neuroradiol 2006;27:35-9. 

9. Kang DW, Chalela JA, Ezzeddine MA, Warach S. Association of 
ischemic lesion patterns on early diffusion-weighted imaging 
with TOAST stroke subtypes. Arch Neurol 2003;60:1730-4. 

10. Wu O, Winzeck S, Giese AK, Hancock BL, Etherton MR, Bouts 
MJ, et al. Big data approaches to phenotyping acute ischemic 
stroke using automated lesion segmentation of multi-center 
magnetic resonance imaging data. Stroke 2019;50:1734-41. 

11. Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon SU, et al. Machine 
learning approach to identify stroke within 4.5 hours. Stroke 
2020;51:860-6. 

12. Boldsen JK, Engedal TS, Pedraza S, Cho TH, Thomalla G, Nig-
hoghossian N, et al. Better diffusion segmentation in acute isch-
emic stroke through automatic tree learning anomaly segmenta-
tion. Front Neuroinform 2018;12:21. 

13. Yu Y, Xie Y, Thamm T, Gong E, Ouyang J, Huang C, et al. Use of 
deep learning to predict final ischemic stroke lesions from initial 
magnetic resonance imaging. JAMA Netw Open 2020;3: 
e200772. 

14. Do LN, Baek BH, Kim SK, Yang HJ, Park I, Yoon W. Automatic 
assessment of ASPECTS using diffusion-weighted imaging in 
acute ischemic stroke using recurrent residual convolutional 
neural network. Diagnostics (Basel) 2020;10:803. 

15. Woo I, Lee A, Jung SC, Lee H, Kim N, Cho SJ, et al. Fully auto-
matic segmentation of acute ischemic lesions on diffu-
sion-weighted imaging using convolutional neural networks: 
comparison with conventional algorithms. Korean J Radiol 
2019;20:1275-84. 

16. Kim YC, Lee JE, Yu I, Song HN, Baek IY, Seong JK, et al. Evalu-
ation of diffusion lesion volume measurements in acute isch-
emic stroke using encoder-decoder convolutional network. 
Stroke 2019;50:1444-51. 

17. Hui H, Zhang X, Li F, Mei X, Guo Y. A partitioning-stacking 
prediction fusion network based on an improved attention 
u-net for stroke lesion segmentation. IEEE Access 2020;8: 
47419-32. 

18. Zhang R, Zhao L, Lou W, Abrigo JM, Mok VC, Chu WC, et al. 

Automatic segmentation of acute ischemic stroke from DWI 
using 3-D fully convolutional DenseNets. IEEE Trans Med Im-
aging 2018;37:2149-60. 

19. Liu X, Yang H, Qi K, Dong P, Liu Q, Liu X, et al. MSDF-net: 
multi-scale deep fusion network for stroke lesion segmentation. 
IEEE Access 2019;7:178486-95. 

20. Zhang L, Song R, Wang Y, Zhu C, Liu J, Yang J, et al. Ischemic 
stroke lesion segmentation using multi-plane information fu-
sion. IEEE Access 2020;8:45715-25. 

21. Liu L, Wu FX, Wang J. Efficient multi-kernel dcnn with pixel 
dropout for stroke mri segmentation. Neurocomputing 2019; 
350:117-27. 

22. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional 
neural networks for volumetric medical image segmentation. 
In: 2016 fourth international conference on 3D vision (3DV); 
2016; Stanford, CA, USA.

23. Bang OY, Chung JW, Son JP, Ryu WS, Kim DE, Seo WK, et al. 
Multimodal MRI-based triage for acute stroke therapy: chal-
lenges and progress. Front Neurol 2018;9:586. 

24. Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW. MR dif-
fusion imaging in ischemic stroke. Neuroimaging Clin N Am 
2011;21:345-77. 

25. Lee LJ, Kidwell CS, Alger J, Starkman S, Saver JL. Impact on 
stroke subtype diagnosis of early diffusion-weighted magnetic 
resonance imaging and magnetic resonance angiography. Stroke 
2000;31:1081-9.  

26. Ay H, Furie KL, Singhal A, Smith WS, Sorensen AG, Koroshetz 
WJ. An evidence-based causative classification system for acute 
ischemic stroke. Ann Neurol 2005;58:688-97. 

27. Ay H, Benner T, Arsava EM, Furie KL, Singhal AB, Jensen MB, 
et al. A computerized algorithm for etiologic classification of 
ischemic stroke: the Causative Classification of Stroke System. 
Stroke 2007;38:2979-84. 

28. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embol-
ic stroke of undetermined source: a systematic review and clini-
cal update. Stroke 2017;48:867-72.  

29. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, 
O'Donnell MJ, et al. Embolic strokes of undetermined source: 
the case for a new clinical construct. Lancet Neurol 2014;13: 
429-38.  

30. Healey JS, Gladstone DJ, Swaminathan B, Eckstein J, Mundl H, 
Epstein AE, et al. Recurrent stroke with rivaroxaban compared 
with aspirin according to predictors of atrial fibrillation: second-
ary analysis of the NAVIGATE ESUS randomized clinical trial. 
JAMA Neurol 2019;76:764-73.  

93https://doi.org/10.18700/jnc.230039

https://doi.org/10.1002/ana.410370214
https://doi.org/10.1002/ana.410370214
https://doi.org/10.1002/ana.410370214
https://www.ncbi.nlm.nih.gov/pubmed/11290470
https://www.ncbi.nlm.nih.gov/pubmed/11290470
https://www.ncbi.nlm.nih.gov/pubmed/11290470
https://www.ncbi.nlm.nih.gov/pubmed/11290470
https://www.ncbi.nlm.nih.gov/pubmed/16418352
https://www.ncbi.nlm.nih.gov/pubmed/16418352
https://www.ncbi.nlm.nih.gov/pubmed/16418352
https://doi.org/10.1001/archneur.60.12.1730
https://doi.org/10.1001/archneur.60.12.1730
https://doi.org/10.1001/archneur.60.12.1730
https://doi.org/10.1161/strokeaha.119.025373
https://doi.org/10.1161/strokeaha.119.025373
https://doi.org/10.1161/strokeaha.119.025373
https://doi.org/10.1161/strokeaha.119.025373
https://doi.org/10.1161/strokeaha.119.027611
https://doi.org/10.1161/strokeaha.119.027611
https://doi.org/10.1161/strokeaha.119.027611
https://doi.org/10.3389/fninf.2018.00021
https://doi.org/10.3389/fninf.2018.00021
https://doi.org/10.1001/jamanetworkopen.2020.0772
https://doi.org/10.1001/jamanetworkopen.2020.0772
https://doi.org/10.1001/jamanetworkopen.2020.0772
https://doi.org/10.1001/jamanetworkopen.2020.0772
https://doi.org/10.3390/diagnostics10100803
https://doi.org/10.3390/diagnostics10100803
https://doi.org/10.3390/diagnostics10100803
https://doi.org/10.3390/diagnostics10100803
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.1161/strokeaha.118.024261
https://doi.org/10.1161/strokeaha.118.024261
https://doi.org/10.1161/strokeaha.118.024261
https://doi.org/10.1161/strokeaha.118.024261
https://doi.org/10.1109/access.2020.2977946
https://doi.org/10.1109/access.2020.2977946
https://doi.org/10.1109/access.2020.2977946
https://doi.org/10.1109/access.2020.2977946
https://doi.org/10.1109/tmi.2018.2821244
https://doi.org/10.1109/tmi.2018.2821244
https://doi.org/10.1109/tmi.2018.2821244
https://doi.org/10.1109/tmi.2018.2821244
https://doi.org/10.1109/access.2019.2958384
https://doi.org/10.1109/access.2019.2958384
https://doi.org/10.1109/access.2019.2958384
https://doi.org/10.1109/access.2020.2977415
https://doi.org/10.1109/access.2020.2977415
https://doi.org/10.1109/access.2020.2977415
https://doi.org/10.1016/j.neucom.2019.03.049
https://doi.org/10.1016/j.neucom.2019.03.049
https://doi.org/10.1016/j.neucom.2019.03.049
https://doi.org/10.3389/fneur.2018.00586
https://doi.org/10.3389/fneur.2018.00586
https://doi.org/10.3389/fneur.2018.00586
https://doi.org/10.1016/j.nic.2011.03.001
https://doi.org/10.1016/j.nic.2011.03.001
https://doi.org/10.1016/j.nic.2011.03.001
https://doi.org/10.1161/01.str.31.5.1081
https://doi.org/10.1161/01.str.31.5.1081
https://doi.org/10.1161/01.str.31.5.1081
https://doi.org/10.1161/01.str.31.5.1081
https://doi.org/10.1002/ana.20617
https://doi.org/10.1161/strokeaha.107.490896
https://doi.org/10.1161/strokeaha.107.490896
https://doi.org/10.1161/strokeaha.107.490896
https://doi.org/10.1161/strokeaha.107.490896
https://doi.org/10.1161/strokeaha.116.016414
https://doi.org/10.1161/strokeaha.116.016414
https://doi.org/10.1161/strokeaha.116.016414
https://doi.org/10.1016/s1474-4422(13)70310-7
https://doi.org/10.1016/s1474-4422(13)70310-7
https://doi.org/10.1016/s1474-4422(13)70310-7
https://doi.org/10.1016/s1474-4422(13)70310-7
https://doi.org/10.1001/jamaneurol.2019.0617
https://doi.org/10.1001/jamaneurol.2019.0617
https://doi.org/10.1001/jamaneurol.2019.0617
https://doi.org/10.1001/jamaneurol.2019.0617
https://doi.org/10.1001/jamaneurol.2019.0617

	INTRODUCTION 
	METHODS 
	Study population 
	Imaging acquisition  
	Data preparation 
	Lesion segmentation mode 
	Subtype classification model 

	RESULTS 
	Lesion segmentation model 
	Stroke subtype classification model 

	DISCUSSION 
	ARTICLE INFORMATION 
	Ethics statement 
	Conflict of interest  
	Acknowledgments
	ORCID 
	Author contributions  

	REFERENCES 

