

Review

Standard Versus Intensive Blood Pressure Control in Acute Ischemic Stroke Patients Successfully Treated With Endovascular Thrombectomy: A Systemic Review and Meta–Analysis of Randomized Controlled Trials

Hyungjong Park,¹ Sung-Il Sohn,¹ Gwang Hyun Leem,² Minho Kim,² Yun Hak Kim,³ Tae-Jin Song⁴

¹Department of Neurology, Keimyung University School of Medicine, Daegu, Korea

²Department of Convergence Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea

³Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea

⁴Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea

Background and Purpose The optimal blood pressure (BP) control after successful endovascular thrombectomy (EVT) in acute ischemic stroke (AIS) with large vessel occlusion (LVO) remains debatable. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) that evaluate the efficacy and safety of standard BP control (with systolic BP \leq 180 mm Hg) versus intensive BP control (systolic BP <140 mm Hg) during the 24 hours after successful EVT in AIS with LVO.

Methods PubMed, Scopus, the Cochrane Central Register of Controlled Trials, and Embase were searched to identify relevant trials. The crude odds ratio (OR) and 95% confidence interval (CI) were calculated and estimates using random-effects models were pooled. This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (PROSPERO ID: CRD42023450673).

Results Four RCTs involving 1,559 participants were included. Regarding efficacy outcomes, intensive BP control was associated with a lower likelihood of functional independence (OR: 0.68; 95% CI: 0.51–0.91 for modified Rankin Scale [mRS] \leq 2) and walking without assistance (OR: 0.65; 95% CI: 0.53–0.81 for mRS \leq 3). For safety outcomes, consistent with the efficacy findings, intensive BP control was significantly associated with severe disability or death (mRS 5 or 6) (OR: 1.34; 95% CI: 1.07–1.69). However, there were no significant differences including all-cause mortality, any intracerebral hemorrhage (ICH), symptomatic ICH, parenchymal hematoma type 2, and stroke recurrence.

Conclusion While all four RCTs were conducted to demonstrate the superiority of intensive BP control over standard BP control, standard BP control may be beneficial for the outcome after EVT for AIS with LVO without increasing adverse safety outcomes. Caution should be needed with the application of intensive BP control during the 24 hours following successful recanalization after EVT.

Keywords Blood pressure; Endovascular therapy; Meta-analysis; Recanalization; Stroke

Correspondence: Tae-Jin Song Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, 260 Gonghang-daero, Gangseo-gu, Seoul 07804, Korea Tel: +82-2-6986-1672 E-mail: knstar@ewha.ac.kr https://orcid.org/0000-0002-9937-762X

Received: November 28, 2023 Revised: January 10, 2024 Accepted: January 11, 2024

Copyright © 2024 Korean Stroke Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Endovascular thrombectomy (EVT) has been established as an effective therapy for acute ischemic stroke (AIS) with large vessel occlusion (LVO).^{1,2} Despite successful recanalization after EVT, a significant number of patients do not achieve functional independence.³⁻⁵ One of the factors associated with such discrepancies could be blood pressure (BP) that influences the post-procedural perfusion status of the brain. For example, persistent elevation of BP after EVT could lead to poor neurological outcomes, increasing the risk of intracerebral hemorrhage (ICH) and cerebral edema.⁶⁻⁸ Conversely, if the microvascular networks in the brain are compromised due to ischemia, they may become more susceptible to changes in BP.^{9,10} Under these circumstances, maintaining BP at a low target could potentially disrupt the delicate balance of blood flow, potentially exacerbating damage to the ischemic brain tissue.¹¹

Current stroke guidelines recommend a target systolic BP (SBP) of less than 180 mm Hg and diastolic BP of less than 105 mm Hg in patients who have received EVT, for the 24 hours following the procedure.^{12,13} However, these recommendations have been derived from earlier clinical trials on intravenous thrombolysis using tissue plasminogen activator, which may not be directly applicable to EVT.^{12,14} Furthermore, these guidelines do not provide specific details on the optimal level below 180 mm Hg. Moreover, there have been discrepancies in the results of observational studies and clinical trials regarding BP levels after successful reperfusion of EVT.¹⁵⁻¹⁸ In a previous observational study, an SBP level of \geq 160 mm Hg was associated with a lower probability of achieving functional independence and a higher incidence of symptomatic ICH compared to a reference range of an SBP level of 100 mm Hg to 119 mm Hg in patients who had successful recanalization of EVT.¹⁶ In addition, a recent large sample size metaanalysis of individual patients' data from observational cohort studies demonstrated that increasing mean systolic BP levels in the first 24 hours after EVT were significantly associated with poor functional outcome, mortality, and early neurologic deterioration.¹⁹ In contrast, a recent clinical trial demonstrated that intensive SBP targets (less than either 140 mm Hg or 160 mm Hg) during the 24 hours after successful EVT did not improve outcome compared with the standard SBP target (180 mm Hg or less).²⁰ Accordingly, the evidence regarding the most effective and safe threshold of SBP after EVT has been inconsistent and inconclusive.

Therefore, establishing the optimal BP target after EVT is essential to provide guidance for healthcare professionals to achieve the best functional outcome after successful EVT. Thus, we conducted a systematic review and meta-analysis of all relevant randomized controlled trials (RCTs) that evaluate the efficacy and safety of standard BP control (SBP \leq 180 mm Hg) versus intensive BP control (SBP <140 mm Hg) during the 24 hours after successful EVT in AIS with LVO.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines and the methodology in the Cochrane Handbook for Systematic Reviews of Interventions to extract data and assess the validity of this meta-analysis (Appendix 1).^{21,22} The included studies obtained approval from their institutional review boards or ethics committees for their protocols. Additionally, all participants reportedly either provided written or verbally confirmed their informed consent. Our protocol was registered with PROSPERO (CRD42023450673).

Search strategy and eligibility criteria

Two investigators (H.P. and S.I.S.) independently screened and discrepancies were resolved by discussion with a third investigator (T.J.S.). We searched PubMed (MEDLINE), Scopus, the Cochrane Central Register of Controlled Trials, and Embase, from inception to October 15, 2023. We restricted the search to studies on humans and RCTs without any language restrictions. The search strategies are shown in Supplementary Table 1. Criteria for inclusion of a study in our meta-analysis were as follows: (1) the study design was an RCT; (2) EVT in AIS with LVO; (3) the study evaluated intensive BP control versus standard BP control during the 24 hours after successful EVT in AIS with LVO; and (4) the study compared extensive outcome parameters between intensive and standard control.

Study selection and data extraction

The results retrieved from all databases were organized in a structured format, and any duplicate entries were removed. The remaining results were independently reviewed by three authors (G.H.L., M.K., and Y.H.K.), and any discrepant judgments were resolved through joint discussion. The screening process consisted of two distinct stages: first, a review of titles and abstracts to evaluate each study's relevance for inclusion in our meta-analysis, and second, a comprehensive assessment of the full-text documents according to predefined eligibility criteria to ascertain their suitability for inclusion in both qualitative and quantitative analyses. The extracted data from the included RCTs were as follows: (1) summary of included studies, including study name, publication year, first author's name, country conducting the study, presence of blinding, inclusion criteria, total

JoS

number of participants, the definition of intensive and standard BP control, and follow-up duration; (2) baseline characteristics of participants in each study, including age, sex, initial SBP and diastolic BP, baseline National Institutes of Health Stroke Scale (NIHSS) score, prior medication history before admission, and previous medical history; (3) study outcomes, including NIHSS, modified Rankin Scale (mRS); and (4) imaging findings, including hemorrhagic transformation after EVT.

Outcomes

The efficacy outcomes of our study were functional independence defined as mRS ≤ 2 , minimal or no disability (mRS ≤ 1), walking without assistance (mRS ≤ 3), and NIHSS change at 24 hours. Safety outcomes included severe disability or death (mRS 5 or 6), all-cause mortality at 3 months, any ICH, symptomatic ICH, parenchymal hematoma type 2 (PH2) according to the European Cooperative Acute Stroke Study III (ECASS-III) criteria,²³ and stroke recurrence during a 3-month follow-up.

Quality assessment

The quality of each included study was evaluated using the revised Cochrane Risk of Bias tool (ROB 2.0) across five bias domains.²⁴ The domains under scrutiny, which focused on evaluating potential biases originating from the randomization process, are bias arising from the randomization process, bias due to deviations from the intended interventions, bias due to missing outcome data, bias in measurement of the outcome, and bias in selection of the reported result. Two independent researchers (H.P. and S.I.S.) assessed each criterion and discussed discrepancies until consensus was reached. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) guidelines by two reviewers (H.P. and T.J.S.).²⁵ The GRADE guidelines, which consist of inconsistency, imprecision, indirectness, publication bias, and risk of bias, were evaluated for each outcome. Any discrepancies were resolved through discussion between the two reviewers. Publication bias can be assessed when the number of included studies is at least 10.

Statistical analysis

Outcomes were presented in terms of odds ratios (ORs) and 95% confidence intervals (Cls). To evaluate the presence and extent of heterogeneity among the included studies, the chi-square test was used to determine the presence of heterogeneity, and the I-square test was used to quantify the degree of heterogeneity. I-square percentages of 25%, 50%, and 75% were regarded as indicative of low, moderate, and high heterogeneity, respectively. If heterogeneity surpassed 50%, we applied the random-effects

model; otherwise, we used the fixed-effects model. The Cochrane Collaboration's Review Manager (RevMan, version 5.3; London, UK) and R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria) was used for meta-analysis, and GRADEpro GDT (GRADEpro Guideline Development Tool, McMaster University and Evidence Prime; www.gradepro.org) was used to assess the certainty of evidence for this meta-analysis.

Results

Study characteristics

The final analysis included four RCTs including 1,559 participants (Figure 1).^{20,26-28} Two studies were conducted in Asian countries (ENCAHNTED2/MT²⁷ in China and OPTIMAL-BP²⁸ in South Korea), and the other two were conducted in the United States (BEST-II)²⁰ and France (BP-TARGET).²⁶ The study design of three studies (ENCHANTED2/MT, OPTIMAL-BP, BEST-II) was a multicenter, blinded end-point study, and the endpoint was not blinded in one study (BP-TARGET) because they collected the primary outcome between 24 and 36 hours from EVT before the 3-month follow-up. All four RCTs were open-label, and the primary outcome was functional independence at 3 months. The summarization and baseline characteristics of the included four RCTs are shown in Tables 1 and 2. Mean SBP differences between intensive and standard BP control in four RCTs was 11.25 mm Hg (Supplementary Table 2). The overall proportion of time spent in the target range was 61.0% but this percentage did not include data of the ENCHANTED2/MT trial because the trial did not provide specific data regarding the proportion of time spent in the target range (Supplementary Table 3). Among four RCTs, one trial (BEST-II) categorized patients into three groups based on SBP targets: (1) SBP <140 mm Hg, (2) SBP <160 mm Hg, and (3) SBP <180 mm Hg without setting a definition of intensive BP control.²⁰ Considering the definition of intensive BP control in other three RCTs,²⁶⁻²⁸ the group managed with SBP <140 mm Hg in BEST-II trial was classified as intensive BP control to increase homogeneity of the intensive control group in our meta-analysis. Furthermore, additional sensitivity analysis in which we classified the group controlled with SBP <160 mm Hg from the BEST-II trial as intensive BP control was performed because the reference group in the BEST-II trial was consisted of those controlled with SBP <140 mm Hg and <160 mm Hg.

Risk of bias assessment and certainty of evidence All studies included in our meta-analysis had a low risk of bias across five domains. The Cochrane risk-of-bias assessment for the included studies is summarized in Supplementary Figures 1 and 2. In addition, the certainty of evidence using the GRADE

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart.

Table 1	Summar	of the fou	r included	randomized	controlled	trials
---------	--------	------------	------------	------------	------------	--------

Trial	Country	Intensity of BP lo	wering, number	Primon (outcome
Indi	Country	Intensive	Standard	rhinary outcome
BEST-II ²⁰	USA	<140 mm Hg (n=40)	<160 mm Hg (n=40) & <180 mm Hg (n=40)	Infarction volume at 36 hours Utility-weighted mRS at 90 days
BP-TARGET ²⁶	France	100–129 mm Hg (n=158)	130–185 mm Hg (n=160)	Radiographic intraparenchymal hemorrhage at 24-36 hours
ENCHANTED2/MT ²⁷	China	<120 mm Hg (n=407)	140–180 mm Hg (n=409)	mRS at 90 days
OPTIMAL-BP ²⁸	South Korea	<140 mm Hg (n=155)	140–180 mm Hg (n=147)	Functional independence (mRS≤2) at 90 days

BP, blood pressure; mRS, modified Rankin Scale.

guidelines for each outcome is outlined in Supplementary Table 4.

Efficacy outcomes

The intensive BP control was significantly associated with a lower likelihood of achieving favorable functional independence (OR, 0.68; 95% Cl, 0.51–0.91, P=0.009) (Figure 2A) and walking without assistance (mRS \leq 3) (OR, 0.65; 95% Cl, 0.53–0.81, P<0.001) (Figure 2B). The overall certainty of evidence in GRADE guide-lines about favorable functional independence and walking without assistance was moderate (Supplementary Table 4). However, there was no significant difference between the intensive BP and standard BP control regarding minimal or no disability (mRS

≤1) (OR, 0.82; 95% Cl, 0.63–1.06, *P*=0.177) (Figure 2C). Additionally, NIHSS changes at 24 hours also showed a better trend toward the standard BP control without significance (mean difference, 0.43; 95% Cl, -0.01–0.87, *P*=0.054) (Figure 2D). Pooled studies were homogeneous in functional independence (I^2 =39%), walking without assistance (I^2 =0%), minimal or no disability (I^2 = 25%), and NIHSS change (I^2 =11%). In sensitivity analysis with SBP <160 mm Hg group as intensive BP control from the BEST-II trial, in line with primary analysis, the intensive BP control showed a significantly lower likelihood of achieving functional independence dence and walking without assistance (Supplementary Figure 3).

able 2. Baseline chai	acteristics of th	he participants fro	im the four inclu	uded randomized	controlled trials	10						
	Age	(yr)	Femal	e sex	HIN	SS	IV t	PA	SBP before E	VT (mm Hg)	SBP after EV	∕T (mm Hg)
2000100	IBM	SBM	IBM	SBM	IBM	SBM	IBM	SBM	IBM	SBM	IBM	SBM
BEST-II ²⁰	75.2±13.3	68.4±12.0	28 (70)	41 (52.5)	16.6 <u>+</u> 8.9	16.3±5.2	17 (42.5)	37 (46.2)	150.0±22.5	148.0 <u>+</u> 24.2	122.0±15.0	129.5 <u>±</u> 19.0
BP-TARGET ²⁶	76.0±14.1	73.3±14.8	77 (49)	88 (55)	16.7 <u>±</u> 5.9	16.7±5.2	85 (54)	83 (52)	155.0±26.0	152.0 <u>+</u> 25.0	128.0±11.0	138.0 <u>+</u> 17.0
ENCHANTED2/MT ²⁷	68.0±12.0	67.0±12.0	249 (61)	257 (63)	15.0 <u>+</u> 7.4	15.0 _± 7.4	132 (32)	115 (28)	158.1±25.0	158.7 <u>±</u> 23.0	159.0±15.0	160.0±14.0
OPTIMAL-BP ²⁸	73.2 <u>±</u> 12.1	72.9±10.8	63 (40.6)	59 (40.1)	13.3 <u>±</u> 5.9	12.2 _± 5.6	44 (28.4)	54 (36.7)	155.2±13.4	154.8±14.4	129.0±7.7	138.0 <u>+</u> 13.6

105

									ion.	±standard deviat	s n (%) or mear	Data are presented as
138.0 <u>±</u> 13.6	129.0±7.7	154.8±14.4	155.2±13.4	54 (36.7)	44 (28.4)	12.2±5.6	13.3±5.9	59 (40.1)	63 (40.6)	72.9±10.8	73.2±12.1	OPTIMAL-BP ²⁸
160.0 <u>±</u> 14.0	159.0±15.0	158.7 <u>±</u> 23.0	158.1±25.0	115 (28)	132 (32)	15.0 <u>±</u> 7.4	15.0±7.4	257 (63)	249 (61)	67.0±12.0	68.0 <u>±</u> 12.0	ENCHANTED2/MT ²⁷
138.0±17.0	128.0±11.0	152.0 <u>±</u> 25.0	155.0±26.0	83 (52)	85 (54)	16.7±5.2	16.7±5.9	88 (55)	77 (49)	73.3±14.8	76.0 <u>+</u> 14.1	BP-TARGET ²⁶
129.5±19.0	122.0±15.0	148.0 <u>±</u> 24.2	150.0 <u>+</u> 22.5	37 (46.2)	17 (42.5)	16.3±5.2	16.6±8.9	41 (52.5)	28 (70)	68.4 <u>±</u> 12.0	75.2±13.3	BEST-II ²⁰

agement; SBM, standard blood pressure management

Safetv outcomes

The intensive BP control showed a significantly higher probability of having severe disability or death (mRS 5 or 6) (OR, 1.34; 95% Cl, 1.07-1.69, P=0.013) (Figure 3A). The overall certainty of evidence in GRADE guidelines about this finding was moderate (Supplementary Table 4). Otherwise, there was no significant difference in all-cause mortality (OR, 1.15; 95% Cl, 0.87-1.53, P=0.330) (Figure 3B), any ICH (OR, 1.09; 95% Cl, 0.88-1.35, P=0.455) (Figure 3C), symptomatic ICH (OR, 1.19; 95% CI, 0.80-1.76, P=0.401) (Figure 3D), PH2 (OR, 1.00; 95% Cl, 0.60-1.66, P=0.924) (Figure 3E), and stroke recurrence (OR, 1.20; 95% Cl, 0.67-2.17, P=0.518) (Figure 3F). In terms of heterogeneity, there was no significant heterogeneity $(l^2=3\%)$ in severe disability or death, l²=0% in all-cause mortality, any ICH, symptomatic ICH, PH2, and stroke recurrence) in severe disability or death, all-cause mortality at 3 months, any ICH, symptomatic ICH, PH2, and stroke recurrence. In sensitivity analysis with SBP <160 mm Hq group as intensive BP control from the BEST-II trial, intensive BP control had a higher probability of having significant disability or death (mRS 5 or 6) (Supplementary Figure 4).

Discussion

In this meta-analysis using four RCTs about BP control after successful EVT, we found that intensive BP control was associated with a reduced probability of functional independence (mRS \leq 2) and walking without assistance (mRS≤3). Additionally, consistent with the direction of functional independence and walking without assistance, the likelihood of severe disability or death (mRS 5 or 6) was significantly increased in intensive BP control. In safety outcomes, there was no significant difference in allcause mortality, any ICH, symptomatic ICH, PH2, and stroke recurrence. In addition, in sensitivity analysis, consistent to initial results, the intensive BP control showed a significantly lower likelihood of achieving functional independence and walking without assistance, while the standard BP control had a lower probability of significant disability or death.

Managing BP can be especially challenging for patients with AIS when considering that this type of stroke arises from the interruption of blood flow to a specific area of the brain, which is influenced by BP. High BP is a risk factor for the development of AIS and other cardiovascular events,^{29,30} but in our study, significantly lowering BP immediately in AIS is not always recommended, particularly in patients with successful recanalization after EVT. The brain has a mechanism known as cerebral autoregulation that ensures consistent cerebral blood flow despite changes in SBP.³¹ Following AIS, this autoregulation may be disrupted, rendering the brain more susceptible to changes in BP. Accordingly, a substantial reduction in SBP after successful recanalization after EVT can potentially reduce cerebral perfusion pressure, possibly leading to additional damage in brain tissue already vulnerable.³²

In particular, patients with LVO who received EVT may already be hemodynamically unstable, as these individuals often pres-

Functional independence (mRS<2)

	Inter	sive	Stan	dard		Odds ratio	Odds	ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rando	om, 95% Cl	
BEST-II, 2023	17	37	36	76	10.9%	0.94 [0.43 , 2.08]			
BP-TARGET, 2021	67	152	69	153	24.7%	0.96 [0.61 , 1.51]			
ENCHANTED2/MT, 2022	192	404	247	406	40.2%	0.58 [0.44 , 0.77]	_ _ _		
OPTIMAL-BP, 2023	61	155	80	147	24.3%	0.54 [0.34 , 0.86]	_		
Total (95% CI)		748		782	100.0%	0.68 [0.51 , 0.91]			
Total events:	337		432				•		
Heterogeneity: Tau ² = 0.03	; Chi ² = 4.8	8, df = 3	(P = 0.18)	; I² = 39%	5		0.2 0.5 1	2	
Test for overall effect: Z = 2	2.63 (P = 0.	009)					Standard	Intensive	-
Test for subgroup difference	es: Not app	olicable							A

Walking without assistance (mRS<3)

	Inter	nsive	Stan	dard		Odds ratio	Odds	ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rando	om, 95% Cl
BEST-II, 2023	20	37	45	76	7.0%	0.81 [0.37 , 1.79]		
BP-TARGET, 2021	80	152	96	153	21.0%	0.66 [0.42 , 1.04]	e _	
ENCHANTED2/MT, 2022	247	404	285	406	51.5%	0.67 [0.50 , 0.89]		
OPTIMAL-BP, 2023	80	155	96	147	20.5%	0.57 [0.36 , 0.90]		
Total (95% CI)		748		782	100.0%	0.65 [0.53 , 0.81]	•	
Total events:	427		522				•	
Heterogeneity: Tau ² = 0.00); Chi ² = 0.6	67, df = 3	(P = 0.88)	; I² = 0%			0.2 0.5 1	2 5
Test for overall effect: Z = 3	3.99 (P < 0	001)					Standard	Intensive
Test for subgroup difference	ces: Not ap	plicable						В

Minimally or no disability (mRS≤1)

	Inter	nsive	Stan	dard		Odds ratio	Odds ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	
BEST-II, 2023	10	37	21	76	8.1%	0.97 [0.40 , 2.34]		
BP-TARGET, 2021	48	152	42	153	22.0%	1.22 [0.75 , 2.00]	_	
ENCHANTED2/MT, 2022	153	404	188	406	46.1%	0.71 [0.53 , 0.94]	- 	
OPTIMAL-BP, 2023	52	155	61	147	23.8%	0.71 [0.45 , 1.14]		
Total (95% CI)		748		782	100.0%	0.82 [0.63 , 1.06]	•	
Total events:	263		312				•	
Heterogeneity: Tau ² = 0.02	; Chi ² = 3.9	98, df = 3	(P = 0.26)	; l² = 25%	,		0.2 0.5 1 2	5
Test for overall effect: Z = 1	1.49 (P = 0.	177)					Standard Intensive	
Test for subgroup difference	es: Not ap	plicable						C

NIHSS change at 24 hours after EVT

	h	ntensiv	e		Standar	d		Mean difference	Mean difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
BEST-II, 2023	-5.7	12.9	40	-6.9	10.4	160	1.0%	1.20 [-3.11 , 5.51]	
BP-TARGET, 2021	-4.1	2.1	152	-4.4	2.1	153	86.9%	0.30 [-0.17 , 0.77]	-
OPTIMAL-BP, 2023	-1.7	5.8	155	-3	5.4	147	12.1%	1.30 [0.04 , 2.56]	F
Total (95% CI)			347			460	100.0%	0.43 [-0.01 , 0.87]	•
Heterogeneity: Chi2 =	2.24, df = 2	(P = 0.3	3); I ² = 11	%					l.
Test for overall effect:	Z = 1.92 (P	= 0.054)							-4 -2 0 2 4
Test for subgroup diffe	erences: No	t applicat	ble						Intensive Standard

Figure 2. Forest plot of the efficacy outcomes.^{20,26-28} (A) Functional independence (mRS \leq 2). (B) Walking without assistance (mRS \leq 3). (C) Minimally or no disability (mRS \leq 1). (D) NIHSS change at 24 hours after endovascular thrombectomy. mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; EVT, endovascular thrombectomy; CI, confidence interval.

ent with a moderate to large infarct core or reperfusion-related injury before recanalization.^{33,34} Therefore, rapidly lowering BP can exacerbate this instability, potentially leading to further organ dysfunction.³⁵ The ischemic penumbra is at risk of permanent damage but may still be viable for a certain period. Before recanalization, this ischemic penumbra may depend on higher

Severe disability or death (mRS 5 or 6)

	Intensi	ive	Stan	dard		Odds ratio	Odds	s ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixe	ed, 95% Cl	
BEST-II, 2023	10	37	22	76	8.4%	0.91 [0.38 , 2.19]			
BP-TARGET, 2021	44	152	37	153	21.0%	1.28 [0.77 , 2.13]	_		
ENCHANTED2/MT, 2022	109	404	93	406	54.2%	1.24 [0.90 , 1.71]		┼┳─	
OPTIMAL-BP, 2023	52	155	30	147	16.4%	1.97 [1.17 , 3.32]			
Total (95% CI)		748		782	100.0%	1.34 [1.07 , 1.69]		•	
Total events:	215		182					•	
Heterogeneity: Chi ² = 3.08	, df = 3 (P =	= 0.38); l ^a	2 = 3%				0.2 0.5	1 2	
Test for overall effect: Z = 2	2.50 (P = 0.	013)					Standard	Intensive	-
Test for subgroup difference	es: Not app	olicable							A

All-cause mortality

	Intens	ive	Stan	dard		Odds ratio	Odd	s ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fix	ed, 95% Cl	
BEST-II, 2023	7	37	20	76	12.1%	0.65 [0.25 , 1.72]			
BP-TARGET, 2021	32	152	24	153	21.5%	1.43 [0.80 , 2.57]	-		
ENCHANTED2/MT, 2022	66	406	61	408	57.9%	1.10 [0.76 , 1.61]	_		
OPTIMAL-BP, 2023	12	155	8	147	8.6%	1.46 [0.58 , 3.68]		F •	
Total (95% CI)		750		784	100.0%	1.15 [0.87 , 1.53]		•	
Total events:	117		113					•	
Heterogeneity: Chi ² = 2.15	, df = 3 (P =	= 0.54); l ^a	² = 0%				0.2 0.5	1 2	T 5
Test for overall effect: Z =	0.97 (P = 0.	330)					Standard	Intensive	
Test for subgroup difference	es: Not app	plicable							В

Any ICH

	Intens	ive	Stan	dard		Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
BEST-II, 2023	14	39	24	77	6.5%	1.24 [0.55 , 2.79]	
BP-TARGET, 2021	65	154	68	157	24.3%	0.96 [0.61 , 1.50]	
ENCHANTED2/MT, 2022	112	407	102	409	46.1%	1.14 [0.84 , 1.56]	-
OPTIMAL-BP, 2023	83	155	78	150	23.0%	1.06 [0.68 , 1.67]	_ - _
Total (95% CI)		755		793	100.0%	1.09 [0.88 , 1.35]	•
Total events:	274		272				-
Heterogeneity: Chi ² = 0.52	, df = 3 (P =	= 0.91); l ²	^e = 0%				0,2 0,5 1 2 5
Test for overall effect: Z = 0	0.75 (P = 0.	455)					Standard Intensive
Test for subgroup difference	es: Not app	olicable					G

Symptomatic ICH

	Inter	nsive	Sta	andard		Odds ratio		Odds	ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	d, 95% Cl	
BEST-II, 2023	3	39	2	77	2.7%	3.13 [0.50 , 19.54]				→
BP-TARGET, 2021	17	154	11	157	21.3%	1.65 [0.74 , 3.64]		_		
ENCHANTED2/MT, 2022	23	407	25	409	51.6%	0.92 [0.51 , 1.65]				
OPTIMAL-BP, 2023	14	155	12	149	24.4%	1.13 [0.51 , 2.54]			•	
Total (95% CI)		755		792	100.0%	1.19 [0.80 , 1.76]				
Total events:	57		50							
Heterogeneity: Chi ² = 2.47	, df = 3 (P =	= 0.48); l ^a	² = 0%				02	0.5 1	2	- <u></u>
Test for overall effect: Z =	0.85 (P = 0	.401)					5	Standard	Intensive	
Test for subgroup difference	es: Not ap	plicable								D

Figure 3. Forest plot of the safety outcomes.^{20,26-28} (A) Severe disability or death (mRS 5 or 6). (B) All-cause mortality. (C) Any intracerebral hemorrhage. (D) Symptomatic intracerebral hemorrhage. mRS, modified Rankin Scale; ICH, intracerebral hemorrhage; CI, confidence interval.

PH2

	Inten	sive	Star	ndard		Odds ratio		Odds	ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed	d, 95% CI	
BEST-II, 2023	1	37	6	72	13.2%	0.31 [0.04 , 2.64]	+	-		
BP-TARGET, 2021	15	154	12	157	35.7%	1.30 [0.59 , 2.88]			-	
OPTIMAL-BP, 2023	17	155	17	150	51.2%	0.96 [0.47 , 1.97]				
Total (95% CI)		346		379	100.0%	1.00 [0.60 , 1.66]				
Total events:	33		35							
Heterogeneity: Chi ² = 1	.60, df = 2	2 (P = 0.4	15); l² = 0%					0.5 1	2	T ₂
Test for overall effect: 2	Z = 0.01 (F	= 0.924)				0.2	Standard	Intensive	0
Test for subgroup differ	ences: No	t applica	ble							e
Stroke recurrence	Inte	ensive	St	andard		Odds ratio		Odds	ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixe	d, 95% Cl	
BP-TARGET, 2021		0 1	58 .	1 16	0 7.49	6 0.34 [0.01 , 8.30] _			
ENCHANTED2/MT, 2022	2 2	5 40	07 20	0 40	9 92.69	6 1.27 [0.70 , 2.33]	-	-	
Total (95% CI)		5	65	56	9 100.0%	6 1.20 [0.67 , 2.17]	1			
Total events:	2	5	2	1		•	-		ſ	
Heterogeneity: Chi ² = 0.6	64, df = 1 (P = 0.42)	; I² = 0%					01	1 10	100
Test for overall effect: Z :	= 0.62 (P =	0.518)	-				0.01	Standard	Intensive	
Test for subgroup differe	nces: Not a	applicable	9							Ð

Test for subgroup differences: Not applicable

Figure 3. Forest plot of the safety outcomes.^{20,26-28} (E) Parenchymal hematoma type 2 (PH2). (F) Stroke recurrence. Cl, confidence interval.

BP to maintain cerebral perfusion pressure due to the loss of cerebral autoregulation. Under these circumstances, excessively reducing BP after successful recanalization may extend the damage to this ischemic penumbra.³²

In previous observational studies, elevated BP was associated with a higher likelihood of poor outcome and risk of ICH.¹⁵⁻¹⁹ These results have a discrepancy with our meta-analysis using RCTs. This discrepancy may be originated from study design such as various uncontrolled confounding factors, the lack of data regarding how successfully SBP was controlled among the different groups during monitoring period, and absence of standardized BP measurement protocol in observational studies.

In our study, the rates of any ICH, symptomatic ICH, and severe hemorrhagic transformation (PH2) were similar between the two groups. The four RCTs that were included set the maximal target SBP to be below 180 mm Hg based on current guidelines. Thus, in accordance with current guidelines,^{12,13} when SBP is controlled under 180 mm Hq, the incidence of ICH was not different between intensive and standard BP control.

Moreover, elevated SBP is well-known to be a risk factor for hemorrhagic transformation after EVT,^{36,37} but detailed SBP targets to mitigate ICH or severe hemorrhagic transformation after EVT have not been clearly proposed.³⁶ Although RCT-based evidence is still lacking regarding the development of symptomatic ICH or hemorrhagic transformation after EVT when SBP is adjusted above 180 mm Hg, our meta-analysis is meaningful in showing that an SBP 180 mm Hg or less may not increase the risk of developing critical issues such as symptomatic ICH or severe hemorrhagic transformation.

In four RCTs, the standard BP control was defined as having an SBP <180-185 mm Hq. However, the mean SBP throughout the 24-hour period in the standard BP control group was consistently maintained within the range of 140–160 mm Hq.^{20,26-28} Thus, there was a relatively small mean SBP difference between the standard and intensive BP control groups. In addition, a substantial portion of patients did not stay within the specified BP target of each group during the 24-hour monitoring period. Therefore, in the future, additional trials should be conducted, using different BP targets, and for patients who have successfully maintained their BP within the target range.

Our study had several limitations. First, although our intensive SBP control group was based on an SBP less than 140 mm Hg, there were two clinical trials (BP-TARGET and ENCHANTED2/MT) that defined the intensive arm as SBP 100-129 mm Hg (BP-TAR-GET) or <120 mm Hg (ENCHANTED2/MT).^{26,27} Thus, there is an issue with the intensive BP control group being heterogeneous in our study. Pooled analysis using individual patient data from four RCTs should be conducted in the future. Second, analysis of baseline characteristics for all participants and subgroup analysis based on stroke subtype and underlying vascular status was not possible due to the absence of individual data from the RCTs included in our meta-analysis. Third, because of the difficulties with conducting double-blinded studies in the context of clinical trials regarding BP control in AIS with LVO after successful re-

JoS

canalization, the significance of the findings in our study may be relatively limited.

Conclusions

Our meta-analysis showed that intensive SBP control during the 24 hours after successful recanalization following EVT was associated with a higher risk of poor neurological outcomes compared to standard SBP control. Therefore, caution is warranted, as the strategy of aggressively lowering SBP during the 24 hours following successful recanalization after EVT may lead to a poorer prognosis compared to the standard BP control.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2023.04119.

Funding statement

This work was supported by an Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (2022–0-00621 to TJS, Development of artificial intelligence technology that provides dialog-based multi-modal explainability). This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: RS-2023-00262087 to TJS). The funding source had no role in the design, conduct, or reporting of this study.

Conflicts of interest

The authors have no financial conflicts of interest.

Author contribution

Conceptualization: HP, TJS. Study design: HP, TJS. Methodology: HP, SIS, TJS. Data collection: GHL, MK, YHK. Statistical analysis: HP. Writing—original draft: HP, TJS. Writing—review & editing: TJS. Funding acquisition: TJS. Approval of final manuscript: all authors.

References

1. Galecio-Castillo M, Farooqui M, Hassan AE, Jumaa MA, Divani AA, Ribo M, et al. Clinical and safety outcomes of endovascular therapy 6 to 24 hours after large vessel occlusion ischemic stroke with tandem lesions. *J Stroke* 2023;25:378-387.

- 2. Morsi RZ, Elfil M, Ghaith HS, Aladawi M, Elmashad A, Kothari S, et al. Endovascular thrombectomy for large ischemic strokes: a living systematic review and meta-analysis of randomized trials. *J Stroke* 2023;25:214-222.
- Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after largevessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *Lancet* 2016;387:1723-1731.
- Lapergue B, Blanc R, Costalat V, Desal H, Saleme S, Spelle L, et al. Effect of thrombectomy with combined contact aspiration and stent retriever vs stent retriever alone on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER2 randomized clinical trial. JAMA 2021;326:1158-1169.
- Jiang QM, Yu S, Dong XF, Wang HS, Hou J, Huang ZC, et al. Predictors and dynamic nomogram to determine the individual risk of malignant brain edema after endovascular thrombectomy in acute ischemic stroke. *J Clin Neurol* 2022;18:298– 307.
- Maier IL, Tsogkas I, Behme D, Bähr M, Knauth M, Psychogios MN, et al. High systolic blood pressure after successful endovascular treatment affects early functional outcome in acute ischemic stroke. *Cerebrovasc Dis* 2018;45:18–25.
- Goyal N, Tsivgoulis G, Pandhi A, Chang JJ, Dillard K, Ishfaq MF, et al. Blood pressure levels post mechanical thrombectomy and outcomes in large vessel occlusion strokes. *Neurolo*gy 2017;89:540–547.
- Martins Al, Sargento-Freitas J, Silva F, Jesus-Ribeiro J, Correia I, Gomes JP, et al. Recanalization modulates association between blood pressure and functional outcome in acute ischemic stroke. *Stroke* 2016;47:1571–1576.
- Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. *J Cereb Blood Flow Metab* 1999;19:624–633.
- 10. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. *Free Radic Biol Med* 2005;39: 51–70.
- Kim BJ, Singh N, Menon BK. Hemodynamics of leptomeningeal collaterals after large vessel occlusion and blood pressure management with endovascular treatment. *J Stroke* 2021;23: 343–357.
- 12. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to

the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* 2019;50:e344-e418.

- Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. *J Neurointerv Surg* 2019;11:535–538.
- Sandset EC, Anderson CS, Bath PM, Christensen H, Fischer U, Gąsecki D, et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. *Eur Stroke J* 2021;6:XLVIII-LXXXIX.
- Matusevicius M, Cooray C, Bottai M, Mazya M, Tsivgoulis G, Nunes AP, et al. Blood pressure after endovascular thrombectomy: modeling for outcomes based on recanalization status. *Stroke* 2020;51:519–525.
- Anadani M, Arthur AS, Tsivgoulis G, Simpson KN, Alawieh A, Orabi Y, et al. Blood pressure goals and clinical outcomes after successful endovascular therapy: a multicenter study. *Ann Neurol* 2020;87:830-839.
- Petersen NH, Kodali S, Meng C, Li F, Nguyen CK, Peshwe KU, et al. Blood pressure trajectory groups and outcome after endovascular thrombectomy: a multicenter study. *Stroke* 2022;53:1216–1225.
- Mistry EA, Sucharew H, Mistry AM, Mehta T, Arora N, Starosciak AK, et al. Blood pressure after endovascular therapy for ischemic stroke (BEST): a multicenter prospective cohort study. *Stroke* 2019;50:3449–3455.
- Katsanos AH, Malhotra K, Ahmed N, Seitidis G, Mistry EA, Mavridis D, et al. Blood pressure after endovascular thrombectomy and outcomes in patients with acute ischemic stroke: an individual patient data meta-analysis. *Neurology* 2022; 98:e291-e301.
- Mistry EA, Hart KW, Davis LT, Gao Y, Prestigiacomo CJ, Mittal S, et al. Blood pressure management after endovascular therapy for acute ischemic stroke: the BEST-II randomized clinical trial. JAMA 2023;330:821-831.
- 21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71.
- 22. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2019.
- 23. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. *N Engl J Med* 2008;359:1317–1329.

- 24. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019;366:14898.
- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008;336:924-926.
- Mazighi M, Richard S, Lapergue B, Sibon I, Gory B, Berge J, et al. Safety and efficacy of intensive blood pressure lowering after successful endovascular therapy in acute ischaemic stroke (BP-TARGET): a multicentre, open-label, randomised controlled trial. *Lancet Neurol* 2021;20:265–274.
- 27. Yang P, Song L, Zhang Y, Zhang X, Chen X, Li Y, et al. Intensive blood pressure control after endovascular thrombectomy for acute ischaemic stroke (ENCHANTED2/MT): a multicentre, open-label, blinded-endpoint, randomised controlled trial. *Lancet* 2022;400:1585-1596.
- Nam HS, Kim YD, Heo J, Lee H, Jung JW, Choi JK, et al. Intensive vs conventional blood pressure lowering after endovascular thrombectomy in acute ischemic stroke: the OPTIMAL-BP randomized clinical trial. *JAMA* 2023;330:832-842.
- Béjot Y. Targeting blood pressure for stroke prevention: current evidence and unanswered questions. *J Neurol* 2021;268:785-795.
- 30. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. *Hypertension* 2020;75:285-292.
- 31. Ruland S, Aiyagari V. Cerebral autoregulation and blood pressure lowering. *Hypertension* 2007;49:977–978.
- 32. Peng TJ, Ortega-Gutiérrez S, de Havenon A, Petersen NH. Blood pressure management after endovascular thrombectomy. *Front Neurol* 2021;12:723461.
- Lee JS, Hwang YH, Sohn SI. Factors contributing to an efficacious endovascular treatment for acute ischemic stroke in Asian population. *Neurointervention* 2021;16:91–110.
- 34. Zhang Z, Pu Y, Mi D, Liu L. Cerebral hemodynamic evaluation after cerebral recanalization therapy for acute ischemic stroke. *Front Neurol* 2019;10:719.
- 35. Mastorakos P, Liu KC, Schomer A. Adverse effects of aggressive blood pressure control in patients with intracerebral hemorrhage. *J Neurocrit Care* 2017;10:36–40.
- 36. Silverman A, Kodali S, Sheth KN, Petersen NH. Hemodynamics and hemorrhagic transformation after endovascular therapy for ischemic stroke. *Front Neurol* 2020;11:728.
- Anadani M, Orabi MY, Alawieh A, Goyal N, Alexandrov AV, Petersen N, et al. Blood pressure and outcome after mechanical thrombectomy with successful revascularization. *Stroke* 2019;50:2448-2454.

Database	Search strategy
Pubmed	("mechanical thrombectomy" OR "endovascular thrombectomy" OR "endovascular therapy" OR "endovascular") AND ("cerebral infarction" OR "ischemic stroke" OR "stroke") AND ("intensive blood pressure" OR "conventional blood pressure" OR "standard blood pressure" OR "blood pressure lowering" OR "blood pressure management" OR "blood pressure target")
Embase	(mechanical thrombectomy:ab,ti OR endovascular thrombectomy:ab,ti OR endovascular therapy:ab,ti 'endovascular') AND (cerebral infarction:ab,ti OR ischemic stroke:ab,ti OR stroke:ab,ti) AND (intensive blood pressure:ab,ti OR conventional blood pressure:ab,ti OR standard blood pressure:ab,ti OR blood pressure lowering:ab,ti OR blood pressure management:ab,ti OR blood pressure target:ab,ti)
Scopus (limited to title and abstract and keywords)	("mechanical thrombectomy" OR "endovascular thrombectomy" OR "endovascular therapy" OR "endovascular") AND ("cerebral infarction" OR "ischemic stroke" OR "stroke" OR "cerebrovascular accident" OR "brain ischemia") AND ("intensive blood pressure" OR "conventional blood pressure" OR "standard blood pressure" OR "blood pressure lowering" OR "blood pressure management" OR "blood pressure target")
The Cochrane Central Registry of Controlled Trials	("mechanical thrombectomy" OR "endovascular thrombectomy" OR "endovascular therapy" OR "endovascular") AND ("cerebral infarction" OR "ischemic stroke" OR "stroke") AND ("intensive blood pressure" OR "conventional blood pressure" OR "standard blood pressure" OR "blood pressure lowering" OR "blood pressure management" OR "blood pressure target")

Supplementary Table 2. Mean SBP differences of each trial

Trial	Mean SBP differences (mm Hg)	
BEST-II ²⁰	7.5	
BP-TARGET ²⁶	10.0	
ENCHANTED2/MT ²⁷	17.9	
OPTIMAL-BP ²⁸	9.6	

SBP, systolic blood pressure.

Supplementary	Table 3.	Proportion	of time	spent in	the	target in	each
trial							

Trial	Intensive (%)	Standard (%)	Overall (%)
BEST-II ²⁰	72.5	40	56.3
BP-TARGET ²⁶	61.0	66.6	63.8
ENCHANTED2/MT ²⁷	NA	NA	NA
OPTIMAL-BP ²⁸	83	42.1	63.0

NA, not accessible.

Supplementary Table 4. GRADE guidelines about each outcome

Certainty assessment Summary of findings												
No. of	Study					Publication	No. of p	oatients		Effect		
studies	design	Risk of bias	Inconsistency	Indirectness	Imprecision	bias	Intensive	Standard	Relative (95% Cl)	Absolute (95% Cl)	Certainty	
Functiona	l indepe	endence (mRS	5≤2)									
4	RCTs	Not serious	Not serious	Not serious	Serious*	None	337/748 (45.1%)	432/782 (55.2%)	OR 0.68 (0.51–0.91)	96 Fewer per 1,000 (from 166 fewer to 23 fewer)	⊕⊕⊕⊖ Moderate	
Minimally	or no c	lisability (mR	S≤1)									
4	RCTs	Not serious	Not serious	Not serious	Serious*	None	263/748 (35.2%)	312/782 (39.9%)	OR 0.82 (0.63–1.06)	47 Fewer per 1,000 (from 104 fewer to 14 more)	⊕⊕⊕⊖ Moderate	
Walking v	Walking without assistance (mRS≤3)											
4	RCTs	Not serious	Not serious	Not serious	Serious*	None	427/748 (57.1%)	522/782 (66.8%)	OR 0.65 (0.53–0.81)	101 Fewer per 1,000 (from 152 fewer to 48 fewer)	⊕⊕⊕⊖ Moderate	
NIHSS ch	ange at	24 hours afte	er EVT									
3	RCTs	Not serious	Not serious	Not serious	Very serious ⁺	None	347	460		MD 0.43 higher (0.01 lower to 0.87 higher)	⊕⊕⊖⊖ Low	
Severe dis	sability of	or death (mRS	5 5 or 6)									
4	RCTs	Not serious	Not serious	Not serious	Serious*	None	215/748 (28.7%)	182/782 (23.3%)	OR 1.34 (1.06–1.70)	56 More per 1,000 (from 11 more to 107 more)	⊕⊕⊕⊖ Moderate	
All-cause	mortali	ty										
4	RCTs	Not serious	Not serious	Not serious	Very serious ⁺	None	117/750 (15.6%)	113/784 (14.4%)	OR 1.18 (0.88–1.58)	22 More per 1,000 (from 15 fewer to 66 more)	⊕⊕⊖⊖ Low	
Any ICH												
4	RCTs	Not serious	Not serious	Not serious	Serious*	None	274/755 (36.3%)	272/793 (34.3%)	OR 1.09 (0.88–1.35)	20 More per 1,000 (from 28 fewer to 40 more	⊕⊕⊕⊖ Moderate	
Symptom	atic ICH											
4	RCTs	Not serious	Not serious	Not serious	Very serious ⁺	None	57/755 (7.5%)	50/792 (6.3%)	OR 1.14 (0.77–1.68)	8 More per 1,000 (from 14 fewer to 39 more)	⊕⊕⊖⊖ Low	
PH2												
3	RCTs	Not serious	Not serious	Not serious	Very serious ⁺	None	33/346 (9.5%)	35/379 (9.2%)	OR 1.00 (0.66 –1.66)	0 Fewer per 1,000 (from 35 fewer to 52 more)	⊕⊕⊖⊖ Low	
Stroke rec	currence											
2	RCTs	Not serious	Not serious	Not serious	Very serious ⁺	None	25/565 (4.4%)	21/569 (3.7%)	OR 1.20 (0.67–2.17)	7 More per 1,000 (from 12 fewer to 40 more)	⊕⊕⊖⊖ Low	

GRADE, Grading of Recommendations Assessment, Development and Evaluation; Cl, confidence interval; mRS, modified Rankin Scale; RCTs, randomized controlled trials; OR, odds ratio; MD, mean difference; NIHSS, National Institutes of Health Stroke Scale; EVT, endovascular thrombectomy; ICH, intracerebral hemorrhage; PH2, parenchymal hematoma type 2.

*The confidence interval does not rule out the possibility of significant harm or benefit; [†]The confidence interval does not rule out the possibility of significant harm or benefit and the number of events is less than 300.

	D1	D2	D3	D4	D5	Overall			
BEST-II ²⁰	+	+	+	+	+	+			
BP-TARGET ²⁶	+	+	+	+	+	+			
ENCHANTED2/MT ²⁷	+	+	+	+	+	+			
OPTIMAL-BP ²⁸	+	+	+	+	+	+			
D1: Bias arising from the randomization process D2: Bias due to deviations from intended intervention Ø High									
D3: Bias due to missing outcor	me data	a			-	Some concerns			
14: Bias in measurement of the outcome 15: Bias in selection of reported results									

Supplementary Figure 1. The risk of bias summary in included studies.

Bias arising from the randomization process						
Bias due to deviations from intended interventions						
Bias due to missing outcome data						
Bias due to missing outcome data						
Bias in selection of reported results						
	⊢		I			
	0	2	25	50	75	100 (%)
Low risk of bias Unclear	risk of bias	H I	ligh risk of	bias		

Supplementary Figure 2. The risk of bias graph in included studies.

JoS

Functional independe	nce (mRS≤2)	
	Intensive	Standard

	Inten	sive	Standard			Odds ratio	Ode		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Ran	dom, 95% Cl	
BEST-II, 2023	34	76	19	37	9.6%	0.77 [0.35 , 1.69]			
BP-TARGET, 2021	67	152	69	153	23.9%	0.96 [0.61 , 1.51]	_	.	
ENCHANTED2/MT, 2022	192	404	247	406	43.1%	0.58 [0.44 , 0.77]			
OPTIMAL-BP, 2023	61	155	80	147	23.4%	0.54 [0.34 , 0.86]			
Total (95% CI)		787		743	100.0%	0.66 [0.51 , 0.86]	•		
Total events:	354		415						
Heterogeneity: Tau ² = 0.02	2; Chi ² = 4.2	20, df = 3	(P = 0.24)	; l² = 29%	6		0.2 0.5	1 2	5
Test for overall effect: Z = 3.10 (P = 0.002)							Standard	Intensive	
Test for subgroup difference	ces: Not ap	plicable							A

Walking without assistance (mRS<3)

	Intensive Stan			dard		Odds ratio	Odds ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	iom, 95% Cl	
BEST-II, 2023	42	76	24	37	6.7%	0.67 [0.30 , 1.51]			
BP-TARGET, 2021	80	152	96	153	21.1%	0.66 [0.42 , 1.04]		4	
ENCHANTED2/MT, 2022	247	404	285	406	51.7%	0.67 [0.50, 0.89]			
OPTIMAL-BP, 2023	80	155	96	147	20.5%	0.57 [0.36 , 0.90]			
Total (95% CI)		787		743	100.0%	0.64 [0.52 , 0.79]	•		
Total events:	449		501				•		
Heterogeneity: Tau ² = 0.00); Chi ² = 0.3	37, df = 3	(P = 0.95)	; l ² = 0%			02 05	1 2	5
Test for overall effect: Z =		Standard	Intensive						
Test for subgroup difference	es: Not app	plicable							В

Minimally or no disability (mRS<1)

	Intensive		Star	Standard		Odds ratio	Odds ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl			
BEST-II, 2023	20	76	11	37	7.9%	0.84 [0.35 , 2.02]	_			
BP-TARGET, 2021	48	152	42	153	21.4%	1.22 [0.75 , 2.00]				
ENCHANTED2/MT, 2022	153	404	188	406	47.3%	0.71 [0.53, 0.94]	_ _			
OPTIMAL-BP, 2023	52	155	61	147	23.3%	0.71 [0.45 , 1.14]				
Total (95% CI)		787		743	100.0%	0.81 [0.63 , 1.04]	•			
Total events:	273		302				-			
Heterogeneity: Tau ² = 0.02	; Chi ² = 3.8	80, df = 3	(P = 0.28);	² = 21%			0.2 0.5 1 2 5			
Test for overall effect: Z = 1	1.65 (P = 0.	135)					Standard Intensive			
Test for subgroup differences: Not applicable										

NIHSS change at 24 hours after EVT

	Ir	Intensive			ndard			Mean difference	Mean difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
BEST-II, 2023	-5.5	6.5	80	-7	6.5	40	3.1%	1.50 [-0.97 , 3.97]	
BP-TARGET, 2021	-4.1	2.1	152	-4.4	2.1	153	85.1%	0.30 [-0.17, 0.77]	-
OPTIMAL-BP, 2023	-1.7	5.8	155	-3	5.4	147	11.8%	1.30 [0.04 , 2.56]	—
Total (95% CI)			387			340	100.0%	0.46 [0.02 , 0.89]	•
Heterogeneity: Chi2 =	2.82, df = 2	(P = 0.2	4); I ² = 29	%					·
Test for overall effect:	Z = 2.05 (P	= 0.043)						-4 -2 0 2 4
Test for subgroup diffe	erences: No	t applicat	ble						Intensive Standard

Supplementary Figure 3. Forest plot of the efficacy outcome as sensitivity analysis.^{20,26-28} (A) Functional independence (mRS≤2). (B) Walking without assistance (mRS≤3). (C) Minimally or no disability (mRS≤1). (D) NIHSS change at 24 hours after endovascular thrombectomy. mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; EVT, endovascular thrombectomy; CI, confidence interval.

Severe disability or death (mRS 5 or 6)

	Inten	sive	Stand	dard	Odds ratio Odds ratio			s ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	ed, 95% Cl	
BEST-II, 2023	28	76	8	37	5.6%	2.11 [0.85 , 5.26]		_		•
BP-TARGET, 2021	44	152	37	153	21.6%	1.28 [0.77 , 2.13]				
ENCHANTED2/MT, 2022	109	404	93	406	55.9%	1.24 [0.90 , 1.71]		-		
OPTIMAL-BP, 2023	52	155	30	147	16.9%	1.97 [1.17 , 3.32]				
Total (95% CI)		787		743	100.0%	1.42 [1.13 , 1.79]			•	
Total events:	233		168						-	
Heterogeneity: Chi ² = 3.07, df = 3 (P = 0.38); I ² = 2%								0.5	1 2	- <u></u> 5
Test for overall effect: Z = 2.99 (P = 0.003)								Standard	Intensive	
Test for subgroup difference				A						

All-cause mortality

	Intens	sive	Stand	lard		Odds ratio	Odd		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fix	ed, 95% Cl	
BEST-II, 2023	21	76	6	37	7.0%	1.97 [0.72 , 5.41]	_		→
BP-TARGET, 2021	32	152	24	153	22.7%	1.43 [0.80 , 2.57]	-	—	
ENCHANTED2/MT, 2022	66	406	61	408	61.2%	1.10 [0.76 , 1.61]	_	-	
OPTIMAL-BP, 2023	12	155	8	147	9.1%	1.46 [0.58 , 3.68]		F•	
Total (95% CI)		789		745	100.0%	1.27 [0.95 , 1.69]		•	
Total events:	131		99					-	
Heterogeneity: Chi2 = 1.51	0.2 0.5	1 2	5						
Test for overall effect: Z =	Standard	Intensive							
Test for subgroup difference			B						

Any ICH

	Intens	ive	Standard			Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
BEST-II, 2023	26	76	12	40	6.5%	1.21 [0.53 , 2.77]	
BP-TARGET, 2021	65	154	68	157	24.3%	0.96 [0.61 , 1.50]	
ENCHANTED2/MT, 2022	112	407	102	409	46.1%	1.14 [0.84 , 1.56]	- -
OPTIMAL-BP, 2023	83	155	78	150	23.0%	1.06 [0.68 , 1.67]	-
Total (95% CI)		792		756	100.0%	1.08 [0.87 , 1.34]	-
Total events:	286		260				
Heterogeneity: Chi ² = 0.49	0,2 0,5 1 2 5						
Test for overall effect: Z = 0	Standard Intensive						
Test for subgroup difference	es: Not app	plicable					C

Symptomatic ICH

	Intens	Intensive Standard				Odds ratio		Odds ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixe	d, 95% Cl	
BEST-II, 2023	3	76	2	37	5.5%	0.72 [0.11 , 4.50]	+			_
BP-TARGET, 2021	17	154	11	157	20.6%	1.65 [0.74 , 3.64]		_		
ENCHANTED2/MT, 2022	23	407	25	409	50.1%	0.92 [0.51 , 1.65]				
OPTIMAL-BP, 2023	14	148	12	140	23.8%	1.11 [0.50 , 2.50]			•	
Total (95% CI)		785		743	100.0%	1.11 [0.74 , 1.64]				
Total events:	57		50							
Heterogeneity: Chi ² = 1.56, df = 3 (P = 0.67); I ² = 0%								0.5 1	2	1 5
Test for overall effect: Z = 0.50 (P = 0.632)								Standard	Intensive	
Test for subgroup difference				D						

Supplementary Figure 4. Forest plot of the safety outcomes as sensitivity analysis.^{20,26-28} (A) Severe disability or death (mRS 5 or 6). (B) All-cause mortality. (C) Any intracerebral hemorrhage. (D) Symptomatic intracerebral hemorrhage. mRS, modified Rankin Scale; ICH, intracerebral hemorrhage; Cl, confidence interval.

PH2

	Intensive		Standard			Odds ratio		Odds ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed	, 95% CI	
BEST-II, 2023	5	72	2	37	8.6%	1.31 [0.24 , 7.08]				→
BP-TARGET, 2021	15	154	12	157	37.5%	1.30 [0.59 , 2.88]		-+	•	
OPTIMAL-BP, 2023	17	155	17	150	53.8%	0.96 [0.47 , 1.97]		-		
Total (95% CI)		381		344	100.0%	1.12 [0.68 , 1.86]				
Total events:	37		31							
Heterogeneity: Chi2 =	0.34, df = 2	2 (P = 0.8	34); I ² = 0%				02	0.5 1	2	-15
Test for overall effect:	Z = 0.44 (F	= 0.632)				0.2	Standard	Intensive	Ĭ
Test for subgroup diffe	erences: No	ot applica	ble							e

Stroke recurrence

	Intens	ive	Standard			Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
BP-TARGET, 2021	0	158	1	160	7.4%	0.34 [0.01 , 8.30]	·
ENCHANTED2/MT, 2022	25	407	20	409	92.6%	1.27 [0.70 , 2.33]	- - ∎-
Total (95% CI)		565		569	100.0%	1.20 [0.67 , 2.17]	. 🔺
Total events:	25		21				r i
Heterogeneity: Chi ² = 0.64	, df = 1 (P =	= 0.42); 1	² = 0%				0.01 0.1 1 10 100
Test for overall effect: Z = 0.62 (P = 0.518)							Standard Intensive
Test for subgroup difference	G						

Supplementary Figure 4. Forest plot of the safety outcomes as sensitivity analysis.^{20,26-28} (E) Parenchymal hematoma type 2 (PH2). (F) Stroke recurrence. Cl, confidence interval.