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Machine learning approach 
for differentiating cytomegalovirus 
esophagitis from herpes simplex 
virus esophagitis
Jung Su Lee1,2,7, Jihye Yun3,7, Sungwon Ham4, Hyunjung Park4, Hyunsu Lee5, 
Jeongseok Kim6, Jeong‑Sik Byeon1, Hwoon‑Yong Jung1, Namkug Kim3,4* & Do Hoon Kim1*

The endoscopic features between herpes simplex virus (HSV) and cytomegalovirus (CMV) esophagitis 
overlap significantly, and hence the differential diagnosis between HSV and CMV esophagitis is 
sometimes difficult. Therefore, we developed a machine-learning-based classifier to discriminate 
between CMV and HSV esophagitis. We analyzed 87 patients with HSV esophagitis and 63 patients 
with CMV esophagitis and developed a machine-learning-based artificial intelligence (AI) system 
using a total of 666 endoscopic images with HSV esophagitis and 416 endoscopic images with CMV 
esophagitis. In the five repeated five-fold cross-validations based on the hue–saturation–brightness 
color model, logistic regression with a least absolute shrinkage and selection operation showed 
the best performance (sensitivity, specificity, positive predictive value, negative predictive value, 
accuracy, and area under the receiver operating characteristic curve: 100%, 100%, 100%, 100%, 100%, 
and 1.0, respectively). Previous history of transplantation was included in classifiers as a clinical factor; 
the lower the performance of these classifiers, the greater the effect of including this clinical factor. 
Our machine-learning-based AI system for differential diagnosis between HSV and CMV esophagitis 
showed high accuracy, which could help clinicians with diagnoses.

Viral esophagitis is most commonly caused by herpes simplex virus (HSV) and cytomegalovirus (CMV) in 
immunocompromised patients and occasionally in immunocompetent patients1. The diagnosis of viral esophagi-
tis is based on clinical history, endoscopic features, and histopathologic features. Clinically, the most common 
symptoms of HSV and CMV esophagitis are odynophagia, dysphagia, and chest pain2,3. The most important risk 
factor of HSV and CMV esophagitis is an immunocompromised status, including human immunodeficiency 
virus infection, organ transplantation, or malignancies4,5. Histopathology with specific immunohistochemical 
stains (IHC) or deoxyribonucleic acid (DNA) polymerase chain reaction (PCR) using tissues are required for 
definitive diagnosis of HSV and CMV esophagitis4,6. However, since tissue-based diagnostic evaluation takes 
several days for a result, immunocompromised patients with poor general conditions that require rapid treatment 
after rapid diagnosis often undergo empirical treatment before histological diagnosis.

When considering empirical antiviral agents, particularly in immunocompromised patients, endoscopic 
features are important for differentiating between HSV and CMV esophagitis until a specific diagnosis is made. 
According to several studies, the endoscopic features of HSV esophagitis include typically multiple, small, dis-
crete, shallow ulcers with bullae or vesicles; yellowish exudate; and coalescence. The involvement of the middle 
to distal esophagus is most common3,7. The specific endoscopic features of CMV esophagitis are solitary, large, 
deep, punch-out, or demarcated serpiginous ulcers2,4,8. However, the endoscopic features of CMV esophagitis are 
variable. CMV esophagitis commonly involves multiple ulcers varying in size in the middle to distal esophagus. 
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The depths of CMV esophageal ulcers are more commonly shallow or intermediate than deep and healed-up9. 
The endoscopic features between HSV and CMV esophagitis significantly overlap1,8. Therefore, the differential 
diagnosis between HSV and CMV esophagitis using endoscopic features can sometimes be confusing.

Recently, many studies have reported impressive performances of artificial intelligence (AI) systems for 
medical imaging10,11. Using a large dataset, an AI system can compensate for the experience of experts and 
identify microstructures and quantitative pixel-level features which are undetectable by the human eye 12. In 
gastrointestinal (GI) endoscopy, several studies have shown favorable performance for detecting and classifying 
GI neoplasms13. Also, AI algorithms for benign, chronic inflammatory disease with diffuse involvement, such as 
Helicobacter pylori gastritis, have reported high accuracy in diagnosis using endoscopic images14,15. Nevertheless, 
a shortcoming of deep learning is that a large amount of data is needed to minimize overfitting and improve 
learning16. Therefore, image feature-based classifiers could be a better classification strategy for small datasets17,18.

In this study, we aimed to develop a machine-learning-based AI system for differential diagnosis between 
HSV and CMV esophagitis using endoscopic images. The classification task can be greatly affected by the extrac-
tion and classification of different features. To capture better endoscopic features of HSV and CMV esophagitis, 
we manually annotated the regions of interest (ROIs). Subsequently, the image features were extracted from 
the annotated ROIs of the endoscopic color images, which were represented by the hue–saturation–brightness 
(HSB) color model. After channel-wise feature filtering based on each channel of color model, the final features 
were selected by a least absolute shrinkage and selection operation (LASSO), and then machine learning clas-
sifiers were trained. In order to achieve robust performance, ROI-based classifiers were designed instead of 
image-based classifiers, and image-based and patient-based accuracies were then obtained by ensembling the 
results of the ROIs.

Table 1.   Baseline and endoscopic characteristics of 150 patients with HSV and CMV esophagitis. Data are 
the number of patients (%) unless otherwise noted. IQR, interquartile range, HSV herpes simplex virus, CMV 
cytomegalovirus, HIV human immunodeficiency virus. *Patients treated with steroid for asthma or interstitial 
lung disease.

HSV (n = 87) CMV (n = 63) p value

Age (median, IQR) (years) 59 (24–84) 61 (24–79) 0.214

Sex (male:female) 61:26 23:40 0.393

Comorbidity

Malignancies 34 (39.1) 22 (34.9) 0.603

 Solid tumor 27 (31.0) 19 (30.2) 0.909

 Hematologic malignancy 7 (8.0) 3 (4.8) 0.521

Immunosuppressive therapy

 Transplantation 14 (16.1) 24 (38.1) 0.002

  Solid organ 11 (12.6) 23 (36.5) 0.001

  Hematopoietic stem cell 3 (3.4) 1 (1.6) 0.639

 Rheumatologic disease 6 (6.9) 2 (3.2) 0.469

HIV infection 0 2 (3.2) 0.175

Diabetes mellitus 14 (16.1) 17 (27.0) 0.139

Chronic kidney disease 4 (4.6) 3 (4.8) 1.000

Liver cirrhosis 1 (1.1) 2 (3.2) 0.572

Steroid user* 2 (2.3) 0 0.510

Corrosive esophagitis 1 (1.1) 0 1.000

No underlying disease 4 (4.6) 0 0.139

Distribution 0.111

Proximal esophagus 5 (5.7) 3 (4.8) 1.000

Middle esophagus 10 (11.5) 12 (46.0) 0.197

Distal esophagus 25 (28.7) 23 (23.8) 0.314

Two or more segments 47 (54.0) 25 (39.7) 0.083

Initial diagnosis of endoscopist

HSV esophagitis 50 (57.5) 5 (7.9)

CMV esophagitis 1 (1.1) 29 (46.0)

Indeterminate 12 (13.8) 15 (23.8)

Esophageal cancer 2 (2.3) 3 (4.8)

Candida esophagitis 11 (12.6) 3 (4.8)

Reflux esophagitis 5 (5.7) 5 (7.9)

Non-specific erosion or ulcer 5 (5.7) 2 (3.2)

Radiation-induced esophagitis 1 (1.1) 1 (1.6)
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Results
Baseline and endoscopic characteristics of patients.  The clinical and endoscopic characteristics of 
the 150 patients are summarized in Table 1. Out of 150 patients, 87 were diagnosed with HSV esophagitis and 
63 with CMV esophagitis. The median age was 61  years (interquartile range 51–70  years) and 119 patients 
(79.3%) were immunocompromised. There were no significant differences in age, sex, or comorbidities except 
for solid organ transplantation. Solid organ transplantation was significantly more common in patients with 
CMV esophagitis than in those with HSV esophagitis (36.5% vs. 12.6%, p < 0.001).

The distribution of HSV and CMV esophagitis commonly involved two or more segments of the esophagus. 
In cases of esophagitis involving two or more segments, 53.1% (25/47) of patients with HSV esophagitis and 
52% (13/25) of patients with CMV esophagitis had involvement of the middle to distal esophagus. Therefore, 

Table 2.   Diagnostic performance of logistic regression with LASSO for discriminating cytomegalovirus 
esophagitis from herpes simplex virus esophagitis. Results were obtained per-ROI (top), per-image (center), 
and per-patient (bottom), and presented as average (standard deviation) of five repeated five-fold cross-
validation. ROI region of interest, HSB hue–saturation–brightness, RGB red–green–blue, Sen. sensitivity, Spec. 
specificity, PPV positive predictive value, NPV negative predictive value, Acc. accuracy, AUC​ area under the 
ROC curve, ROC receiver operating characteristic. *Clinical factor: previous history of transplantation.

Logistic regression 
with LASSO Sen. (%) Spec. (%) PPV (%) NPV (%) Acc (%) AUC​

HSB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

With clinical factor* 
(per-ROI/per-image/
per-patient)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

RGB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

71.6 (17.1) 65.8 (14.7) 42.0 (7.5) 88.3 (5.2) 67.9 (8.8) 0.737 (0.073)

76.1 (15.1) 58.6 (18.8) 55.6 (11.3) 81.0 (8.2) 65.0 (8.4) 0.709 (0.080)

83.2 (16.1) 61.3 (16.2) 62.4 (8.6) 86.3 (10.8) 70.5 (6.9) 0.710 (0.091)

With clinical factor* 
(per-ROI/per-image/
per-patient)

73.6 (15.0) 68.9 (11.0) 43.7 (8.0) 89.2 (5.7) 70.3 (7.0) 0.761 (0.077)

75.7 (15.3) 65.6 (16.8) 59.8 (10.7) 82.7 (7.6) 69.5 (7.4) 0.746 (0.071)

79.6 (14.4) 71.0 (16.3) 69.1 (11.4) 84.4 (8.3) 74.7 (7.0) 0.748 (0.079)

Table 3.   Diagnostic performance of random forest with LASSO for discriminating cytomegalovirus 
esophagitis from herpes simplex virus esophagitis. Results were obtained per-ROI (top), per-image (center), 
and per-patient (bottom), and presented as average (standard deviation) of five repeated five-fold cross-
validation. ROI region of interest, HSB hue–saturation–brightness, RGB red–green–blue, Sen. sensitivity, Spec. 
specificity, PPV positive predictive value, NPV negative predictive value, Acc. accuracy, AUC​ area under the 
ROC curve, ROC receiver operating characteristic. *Clinical factor: previous history of transplantation.

Random forest with 
LASSO Sen. (%) Spec. (%) PPV (%) NPV (%) Acc (%) AUC​

HSB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

99.3 (0.8) 98.8 (0.9) 96.5 (2.7) 99.8 (0.3) 99.0 (0.7) 0.999 (0.001)

99.7 (0.9) 99.7 (0.5) 99.5 (0.7) 99.8 (0.5) 99.7 (0.5) 1.0 (0.001)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

With clinical factor* 
(per-ROI/per-image/
per-patient)

99.2 (0.8) 98.8 (0.7) 96.2 (2.8) 99.7 (0.3) 98.9 (0.7) 0.999 (0.001)

99.8 (0.6) 99.4 (0.8) 99.1 (1.2) 99.8 (0.4) 99.6 (0.6) 1.0 (0.001)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

RGB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

72.0 (13.0) 67.1 (12.9) 42.6 (9.8) 88.4 (5.1) 68.5 (7.8) 0.745 (0.066)

71.8 (14.1) 68.5 (13.6) 59.9 (8.7) 81.0 (7.0) 70.0 (6.0) 0.737 (0.073)

78.0 (16.6) 74.6 (18.0) 72.6 (13.3) 84.6 (9.8) 76.1 (8.0) 0.752 (0.093)

With clinical factor* 
(per-ROI/per-image/
per-patient)

65.2 (16.8) 73.4 (12.4) 45.3 (11.8) 87.1 (6.1) 71.2 (7.0) 0.741 (0.082)

68.9 (13.8) 72.7 (16.3) 63.9 (12.5) 79.9 (6.4) 71.2 (6.9) 0.749 (0.076)

77.1 (16.1) 75.0 (16.3) 72.6 (13.7) 83.9 (8.7) 76.1 (7.1) 0.769 (0.075)
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the middle and/or distal esophagus were the most involved regions in HSV and CMV esophagitis (94.3% and 
95.2%, respectively).

The initial endoscopic diagnosis based on the morphologic findings at the time of endoscopy varied among 
HSV or CMV esophagitis, reflux esophagitis, and esophageal cancer. Compared with the definite diagnosis, only 
57.5% (50/87) of HSV esophagitis cases and 46% (29/63) of CMV esophagitis cases were initially diagnosed 
by endoscopic features at the time of endoscopy. The overall diagnostic accuracy of endoscopists was 52.7% 
(79/150). There was no significant difference between the diagnostic accuracy of endoscopists (p = 0.166) for 
HSV and CMV esophagitis.

Development and performance of the AI system for differential diagnosis between HSV and 
CMV esophagitis.  The classifiers were trained using five repeated five-fold cross-validations in a stratified 
manner over patients, and they evaluated per-ROI, per-image, and per-patient performances using datasets 
divided according to the patients. We obtained the image-based and patient-based accuracies from the designed 
ROI-based classifier through an averaged probability. The probabilities of all ROIs in one image or one patient 
were averaged and considered the representative probability of the image or patient, respectively. Using these 
representative probabilities, final diagnoses were made. Classifiers based on an HSB color model surpassed clas-
sifiers based on an RGB color model in all classification metrics (Tables 2, 3 and 4). In the case of the HSB color 
model with superior performance, per-patient accuracies were 100% in all models; therefore, it was difficult 
to compare the performances between models. For performance comparison between models, the per-image 
accuracies in the HSB color model were summarized as follows. Logistic regression with LASSO showed the 
best performance; the sensitivity, specificity, PPV, NPV, accuracy, and AUC were 100%, 100%, 100%, 100%, 
100%, and 1.0, respectively. It is recommended to perform random forest classification with LASSO; the sensi-
tivity, specificity, PPV, NPV, accuracy, and AUC were 99.8%, 99.4%, 99.1%, 99.8%, 99.6%, and 1.0, respectively, 
using LASSO. Previous history of transplantation was included in the features as a clinical factor, and the lower 
the performance of classifiers, the greater the effect of including this clinical factor. As a result of evaluating the 
differences in diagnostic performance between models using the Wilcoxon signed-rank test19, significant differ-
ences (p value < 0.05) were observed among three models (logistic regression with LASSO, random forest with 
LASSO, and random forest) in the case of the HSB color model, but no significant difference was noted in the 
case of the RGB color model (Supplementary Table S5).  

Discussion
We established an AI system with good performance based on endoscopic images for differential diagnosis 
between HSV and CMV esophagitis. The AI system was trained and validated using 1082 endoscopic images from 
150 patients. Our machine-learning-based AI system, which used logistic regression with LASSO for discrimi-
nating CMV esophagitis from HSV esophagitis, showed a sensitivity, specificity, PPV, NPV, accuracy, and AUC 
of 100%, 100%, 100%, 100%, 100%, and 1.0, respectively. To the best of our knowledge, this is the first AI system 
using endoscopic images with a clinical factor for differential diagnosis between HSV and CMV esophagitis.

Although histopathology with specific IHC stains is the gold standard for the diagnosis of HSV and CMV 
esophagitis, endoscopic features are important for empirical treatment prior to histopathologic diagnosis because 
tissue-based diagnostic evaluation takes several days1. It is very important to start proper treatment as quickly 
as possible and within a few days, especially for immunocompromised patients. Several studies have reported 

Table 4.   Diagnostic performance of random forest for discriminating cytomegalovirus esophagitis from 
herpes simplex virus esophagitis. Results were obtained per-ROI (top), per-image (center), and per-patient 
(bottom), and presented as average (standard deviation) of five repeated five-fold cross-validation. ROI region 
of interest, HSB hue–saturation–brightness, RGB red–green–blue, Sen. sensitivity, Spec. specificity, PPV 
positive predictive value, NPV negative predictive value, Acc. accuracy, AUC​ area under the ROC curve, ROC 
receiver operating characteristic. *Clinical factor: previous history of transplantation.

Random forest Sen. (%) Spec. (%) PPV (%) NPV (%) Acc (%) AUC​

HSB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

98.7 (0. 9) 98.3 (1.3) 94.9 (4.3) 99.6 (0.3) 98.4 (1.1) 0.998 (0.002)

99.5 (0.8) 99.0 (1.2) 98.4 (2.1) 99.7 (0.5) 99.2 (0.9) 0.999 (0.001)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

With clinical factor* 
(per-ROI/per-image/
per-patient)

98.3 (1.7) 98.2 (0.9) 94.3 (3. 6) 99.5 (0.5) 98.3 (0.9) 0.998 (0.002)

99.4 (1.1) 99.2 (1.0) 98.7 (1.6) 99.6 (0.6) 99.3 (0.9) 0.999 (0.001)

100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 1.0 (0.0)

RGB color model

Without clinical factor* 
(per-ROI/per-image/
per-patient)

67.4 (11.8) 74.0 (10.9) 46.8 (11.2) 87.5 (5.3) 72.2 (7.4) 0.752 (0.067)

65.2 (15.0) 74.3 (11.2) 62.6 (7.9) 78.2 (6.4) 70.9 (4.4) 0.734 (0.063)

70.8 (11.3) 79.6 (15.0) 74.4 (13.3) 79.6 (5.0) 75.9 (6.8) 0.754 (0.080)

With clinical factor* 
(per-ROI/per-image/
per-patient)

66.9 (12.1) 74.8 (9.6) 47.3 (10.8) 87.7 (4.8) 73.2 (6.4) 0.752 (0.070)

68.9 (15.9) 71.5 (11.6) 61.4 (6.8) 79.9 (6.6) 71.0 (4.5) 0.736 (0.064)

74.1 (13.7) 78.8 (11.6) 73.3 (10.6) 81.8 (6.9) 76.9 (6.3) 0.758 (0.082)
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endoscopic features for HSV or CMV esophagitis2,7,9,20. However, these features significantly overlap in site 
involvement as they both feature mainly multiple small-sized and shallow ulcers1. In our study, the overall diag-
nostic accuracy of endoscopic features was only 52.7%, which means that nearly 50% of patients may receive 
erroneous empirical treatment until histopathology results are obtained. The differential diagnosis between 
HSV and CMV esophagitis based on endoscopic features will be the most important prognostic parameter for 
immunocompromised patients, in whom rapid treatment can determine prognosis.

Recently, our group investigated the implications of using endoscopic findings for the diagnosis of HSV 
and CMV esophagitis21. The average diagnostic accuracy of eight highly experienced endoscopists was 74.3%, 
and about a quarter of the patients diagnosed as HSV or CMV esophagitis based on endoscopic features were 
misdiagnosed regardless of the endoscopists’ expertise. Therefore, we developed a predictive model based on 
the categorization of endoscopic features and history of transplantation with a high accuracy (92.6%) in dis-
criminating CMV esophagitis from HSV esophagitis. Training through categorizing endoscopic features can 
help endoscopists make accurate diagnoses, but sufficient training is difficult because of the rarity of CMV and 
HSV esophagitis. Machine learning approaches using retrospective data can overcome dependency on experi-
ence and the rarity of the disease.

The classification task can be greatly affected by different feature extraction and classification methods. To 
capture better endoscopic features of HSV and CMV esophagitis, we manually annotated ROIs with the assis-
tance of an expert endoscopist and then extracted image features using an HSB color model. The accuracy of 
the HSB color model was significantly better than that of the RGB color model, because the HSB color model 
is designed to approximate the way humans perceive and interpret color and could be a device-independent 
color representation format22. The robust performance was achieved by averaging the results of the ROI-based 
classifiers. In our study, the diagnostic accuracy of the developed classifier (logistic regression with LASSO) in 
discriminating CMV esophagitis from HSV esophagitis was 100%, which is better than that of the initial diag-
noses by endoscopists (100% vs. 52.7%) as well as that of experienced endoscopists (100% vs. 74.3%) reported 
previously21. The developed AI system has potential for clinical application in differential diagnosis between 
HSV and CMV esophagitis.

Some methodological limitations of this study should be noted. First of all, our study design was retrospec-
tive in nature and had a small sample size. However, viral esophagitis is rare in immunocompetent patients and 
is an opportunistic disease in immunocompromised patients. Additionally, to the best of our knowledge, this 
study is the largest study of HSV and CMV esophagitis, respectively. The development of an AI system using 
images is needed for a large dataset of high-quality images. Therefore, considering the rarity of HSV and CMV 
esophagitis, our study enrolled the largest number of HSV and CMV esophagitis cases and developed an AI 
system for differential diagnosis between HSV and CMV esophagitis. Second, we did not perform comparisons 
between endoscopists and our AI system for validation. We previously reported differential diagnosis between 
HSV and CMV esophagitis using categorization of endoscopic features21. In that study, the diagnostic accuracy 
of endoscopists in randomly selected cases of esophagitis was 74.3% in the experienced group and 74.7% in the 
less experienced group. A highly experienced endoscopist categorized the endoscopic features and the diagnostic 
accuracy improved to 92.6%. Therefore, the categorization of endoscopic features is dependent on the experi-
ence of endoscopists. Our AI system can compensate for expert experience and can support less experienced 
endoscopists. Finally, ROI annotation is required for the developed AI system. We have already assigned ROIs 

Figure 1.   Regions of interest (ROIs) of cytomegalovirus esophagitis and herpes simplex virus esophagitis. (A,B) 
Cytomegalovirus esophagitis cases. (C,D) Herpes simplex virus esophagitis cases. (E–H) Manually annotated 
ROIs of esophagitis lesions.
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with the help of an expert, and this dataset can be used for training an AI system for ROI annotation, enabling 
an end-to-end system.

In conclusion, our machine-learning-based AI system using logistic regression with LASSO for differential 
diagnosis between HSV and CMV esophagitis showed high accuracy. The improvement of the diagnostic accu-
racy of clinicians through this AI system will contribute to improving the prognosis of patients by providing 
rapid treatment based on a quick prediction.

Materials and methods
Patients and date collection.  We retrospectively reviewed the medical records and endoscopic images 
of all patients diagnosed with HSV or CMV esophagitis between April 2008 and December 2016 at Asan Medi-
cal Center (Seoul, Korea). The diagnosis of HSV or CMV esophagitis was confirmed with clinical symptoms, 
endoscopic findings, and histopathologic review with IHC and/or PCR. Patients were excluded according to the 
following criteria: co-infection with HSV and CMV, final pathologic diagnosis of malignancy, recurrent infec-
tion, or missing information on endoscopic findings. The institutional review board of Asan Medical Center 
approved the study (IRB No. 2020-0495). Due to the retrospective study design, written informed consent was 
not obtained from participants. The IRB of our institution waived the need for informed consent based on the 
non-invasive and anonymized nature of this study. This study was conducted in accordance with institutional 
ethical guidelines and the Declaration of Helsinki.

Lesion segmentation and feature extraction.  In order to extract imaging features to differentiate 
between the two types of esophagitis, one board-certified expert (more than 15 years of experience in endos-
copy) reviewed the quality of the collected endoscopic images and manually annotated the regions of interest 
(ROIs). Cases of shaky images or lesions far away from the endoscope light source were excluded because the 
shapes of the lesions were not clearly visible. ROIs were drawn as close to the margins of the lesions as possible 
so as to not include the normal esophageal mucosa (Fig. 1).

The hue–saturation–brightness (HSB) color model was employed to extract image features from endoscopic 
color images. In color image processing, there are various color models designed for specific purposes, such 
as red–green–blue (RGB), cyan–magenta–yellow–black (CMYK), and HSB. The HSB color model, which was 
designed to approximate the way humans perceive and interpret color, is often used in computer vision for feature 
detection or image segmentation since it is a device-independent color representation format22. Our esophagitis 
classifier was compared with one based on the RGB color model, which is the most widely used. Since the char-
acteristics of each ROI in the image are expected to be different, ROI-based classifiers were designed instead 
of image-based classifiers, and then image-based accuracy was obtained by averaging the results of the ROIs. 
We collected 1082 endoscopic images from 150 patients, obtaining a total of 3444 ROIs (HSV: 87 patients, 666 
endoscopic images, 2628 ROIs; CMV: 63 patients, 416 endoscopic images, 816 ROIs).

There were 520 image features extracted from each channel of the HSB and RGB color models, resulting in a 
total of 1,560 image features extracted from each ROI, including first-order (N = 17), texture (N = 87) and wavelet 
analyses (N = 416) (Supplementary Appendix I). The first-order features were derived from intensity histograms 
using first-order statistics, including intensity range, energy, entropy, kurtosis/skewness, maximum/minimum, 
mean, median, uniformity, and variance. Texture features were obtained with a gray-level co-occurrence matrix 
(GLCM) and a gray-level run length matrix (GLRLM) in four directions in two-dimensional (2D) space23; 
GLCM texture features were computed for varying distances of 1, 2, and 3 pixels in four directions. The wavelet 
transformation was applied with a single-level directional discrete wavelet transformation of high-pass and 
low-pass filters24. In total, four wavelet-decomposition images were generated from each ROI: LL, LH, HL, and 
HH images, where ‘L’ means ‘low-pass filter’ and ‘H’ means ‘high-pass filter.’ Then, the first-order and texture 
features were applied to the wavelet-transformed images, yielding 416 wavelet features (17 first-order and 87 
texture features per wavelet-transformed image). All image features were standardized by z-transformation 
before applying classification metrics.

Classification metrics.  Effective feature selection is a crucial step because image features are multiple col-
linear and correlated predictors that could produce unstable estimates and might overfit predictions. The feature 
selection methods can be divided by how they are coupled to the classification or learning algorithms as follows: 
(1) filter method, (2) wrapper method, (3) embedded method25. Filter methods reduce the number of features 
independently. Wrapper methods wrap the feature selection around the classification method and use the pre-
diction accuracy of the model to iteratively select or eliminate a set of features. In embedded methods, the fea-
ture selection process is an integral part of the classification model. We made feature selection more efficient by 
combining the filter method (i.e., feature filtering using univariate feature selection) and the embedded method 
(i.e., LASSO). First, we filtered the extracted features using univariate feature selection in terms of each chan-
nel of the HSB and RGB color models. Based on the p value (< 0.05) of ANOVA tests, 124 features of HSB color 
models were filtered out, and the remaining features included 478 H-channel features, 481 S-channel features, 
and 477 B-channel features. For the RGB color model, 420 features were filtered out, and the remaining features 
included 341 R-channel features, 410 G-channel features, and 389 B-channel features. After channel-wise feature 
filtering, the remaining features were combined according to color model (HSB color model: 1436 features, RGB 
color model: 1140 features). A LASSO was then employed for feature selection of combined features. A total of 
25 LASSOs were performed by five repeated five-fold cross-validations, and 11–18 features and 11–20 features 
were selected from the HSB and RGB color models, respectively (Supplementary Appendix II). Using selected 
image features, two different machine learning classifiers were trained: logistic regression and random forest. 
The random forest is a classifier that derives and ensembles several decision tree classifiers on various sub-
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samples of the dataset to improve the predictive accuracy and control overfitting. In other words, random forest 
does not require additional feature selection. However, we tried to improve the performance of random forest by 
combining LASSO since our dataset has many features compared with the number of datasets. While perform-
ing five repeated five-fold cross-validations, the hyperparameters of logistic regression and random forest were 
obtained by nested cross-validation in each fold. To maximize the probabilities of correct decisions, we found an 
optimal cutoff value using the true-positive and false-positive rates forming the receiver operating characteristic 
(ROC) curve26. Univariate feature selection, LASSO, logistic regression, and random forest classification were 
implemented using the Scikit-learn package (https​://githu​b.com/sciki​t-learn​/sciki​t-learn​)27.

Statistics.  Categorical data were analyzed using the chi-squared test or Fisher’s exact test as appropriate. 
Numerical data were analyzed using Student’s t-test. Sensitivity, specificity, positive predictive value (PPV), neg-
ative predictive value (NPV), accuracy, and area under the curve (AUC) were calculated by standard definitions 
to evaluate the performance of the developed AI system. To evaluate the differences in performance between 
models, we performed the Wilcoxon signed-rank test19. All statistical analyses were performed using SPSS Sta-
tistics for Windows, version 18.0 (IBM; Armonk, NY). p values < 0.05 were considered statistically significant.
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