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A B S T R A C T   

Particulate matter 2.5 (PM2.5) is associated with reproductive health and adverse pregnancy outcomes. How-
ever, studies evaluating biological markers of PM2.5 are lacking, and identifying biomarkers for estimating 
prenatal exposure to prevent pregnancy complications is essential. Therefore, we aimed to explore urine me-
tabolites that are easy to measure as biomarkers of exposure. 

In this matched case-control study based on the PM2.5 exposure, 30 high PM2.5 group (>15 μg/m3) and 30 
low PM2.5 group (<15 μg/m3) were selected from air pollution on pregnancy outcome (APPO) cohort study. We 
used a time-weighted average model to estimate individual PM exposure, which used indoor PM2.5 and outdoor 
PM2.5 concentrations by atmospheric measurement network based on residential addresses. Clinical charac-
teristics and urine samples were collected from participants during the second trimester of pregnancy. Urine 
metabolites were quantitatively measured using gas chromatography-mass spectrometry following multistep 
chemical derivatization. Statistical analyses were conducted using SPSS version 21 and MetaboAnalyst 5.0. 

Small for gestational age and gestational diabetes (GDM) were significantly increased in the high PM2.5 group, 
respectively (P = 0.042, and 0.022). Fifteen metabolites showed significant differences between the two groups 
(P < 0.05). Subsequent pathway enrichment revealed that four pathways, including pentose and glucuronate 
interconversion with three pentose sugars (ribose, arabinose, and xylose; P < 0.05). The concentration of ribose 
increased preterm births (PTB) and GDM (P = 0.044 and 0.049, respectively), and the arabinose concentration 
showed a tendency to increase in PTB (P = 0.044). 

Therefore, we identified urinary pentose metabolites as biomarkers of PM2.5 and confirmed the possibility of 
their relationship with pregnancy complications.   
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1. Introduction 

Particulate matter (PM) is a leading risk factor for cardiovascular and 
respiratory diseases and cancer [1]. PM2.5 (particles with an aero-
dynamic diameter of ≤2.5 µm) is absorbed through the human’s respi-
ration and has been reported to be associated with adverse pregnancy 
outcomes, including small for gestational age (SGA), preterm birth 
(PTB), gestational diabetes (GDM) and preeclampsia [2–8]. 

SGA (birth weight below the 10th percentile for gestational age), and 
PTB (delivery at <37 weeks of gestation) are complications of pregnancy 
that directly affect the prognosis of neonates [4–6,9–12] and GDM is 
also a risk factor for PTB and preeclampsia during pregnancy, and is 
associated with various complications during delivery in addition to 
fetal macrosomia and large for gestational age (LGA) [7,8,13]. Adverse 
pregnancy outcomes are caused by multifactorial risk factors, including 
environmental pollution; however, the pathogenesis of environmental 
exposure remains unclear [14,15]. 

Most existing studies on the relationship between various pregnancy 
complications and fine dust have been conducted by measuring outdoor 
air quality and not by measuring the indoor space where the subject 
spent most of the time [2,4,5,16]. As the majority of modern people 
spend 80–90% of their lives indoors, the importance of indoor air quality 
is gradually being emphasized [17,18]. Therefore, studies using indoor 
air quality measurements have the advantage of showing the relation-
ship with diseases more clearly [17,19,20]. 

In addition, studies have been conducted to evaluate the mechanism 
of how exposure to PM affects fetal health, but there is a lack of bio-
markers that can be easily bio-monitored [19,21–24]. Although there 
are studies on oxidative stress, inflammation, DNA damage, and epige-
netic modulation as biomarkers of PM exposure, there are few 
biomarker studies in pregnant women [21]. 

Metabolomics is useful in understanding the mechanisms by which 
toxic substances impact the body, and subsequent metabolic responses 
to the toxicant [25]. Metabolomics, distinct from xenometabolomics 
which assesses the metabolism of exogenous pollutants, explores 
external factors influencing endogenous metabolites, providing novel 
insights into developing clinical biomarkers associated with pregnancy 
[26,27]. With the recent development of sensitive techniques, including 
gas or liquid chromatography-mass spectrometry or nuclear magnetic 
resonance, it has become a powerful tool for elucidating significantly 
altered metabolites and the subsequent understanding of biochemical 
processes involved in maternal or neonatal disease progression through 
pollutant exposure [28]. Urine metabolites are favored biofluids for 
analyzing the interactions of pregnant women with their environment. 
Clinical samples are easy to obtain, and the metabolites inside these 
samples clearly represent the complete spectrum of metabolic break-
down products in the maternal body. Previous studies have revealed that 
heavy metals significantly perturb urine metabolites, such as short-chain 
acids or amine metabolites [29]. A recent study has investigated the 
close relationship between environmental exposure to organophosphate 
pesticides or phthalates and urine metabolites [30]. Along with the 
advantages of urine metabolomics, the environmental effects on preg-
nant women have great potential for discovering prognostic and diag-
nostic biomarkers. [31]. 

Therefore, in this study, we aimed to examine whether the concen-
tration of PM2.5 affects adverse pregnancy outcomes through actual 
indoor and outdoor particulate matter measurement. We also evaluated 
urine metabolite biomarkers of pregnancy-related complications caused 
by PM2.5 and indicators for biomonitoring PM2.5 exposure. 

2. Materials and methods 

2.1. Study design and collection of blood and urine samples 

A matched case-control group based on the exposure [32] was 
selected by randomly selecting 30 high PM2.5 groups and 30 low PM2.5 

groups depending on personal PM2.5, after matching maternal age and 
pre-pregnancy BMI from the Air Pollution on Pregnancy Outcome 
(APPO) study, an ongoing multicenter prospective cohort study to 
investigate the effects of particulate matter on mothers and fetuses be-
tween January 2021 and December 2023 in seven university hospitals in 
South Korea [33]. At the time of recruitment, the subjects were pregnant 
women before the second trimester of pregnancy without underlying 
diseases, and there were no pregnancy complications at the time of 
recruitment. According to the World Health Organization’s (WHO) air 
quality guideline, a concentration of PM2.5 over 15 µg/m3 is considered 
as the High PM2.5 group, and below 15 µg/m3 as the Low PM2.5 group. 

Basic demographic data and health-related characteristics, including 
age, pre-pregnancy BMI, socioeconomic status, and obstetric history, 
were collected and the presence or absence of complications including 
PTB, SGA, LGA, GDM, and preeclampsia at the time of delivery was 
collected. We collected 15 mL urine samples at regular outpatient visits 
during the second trimester of pregnancy. Urine samples were stored in 
conical tube and transferred to the institution (the Seegene Medical 
Foundation, Seoul, Korea) on the same day of collection by refrigerating 
to prevent deterioration (− 80 ℃). The pregnancy outcomes were eval-
uated after delivery. (Fig. 1). 

2.2. Particulate matter exposure assessment of subjects 

Outdoor PM2.5 concentrations data were collected from a nearby 
urban atmospheric measurement network. The location of the nearby 
measurement station was obtained by collecting participants’ residence 
information. Data from urban air monitoring stations were obtained 
from the Air Korea Database of the Korean Ministry of Environment 
(https://www.airkorea.or.kr/web). The indoor PM2.5, which was 
placed at breathing height in the living room of a subject’s house, was 
measured using an AirGuard K (Kweather, Co., Korea) instrument. This 
device measures the sensor method and transmits the concentration 
information online every 1 min intervals. The measured indoor PM2.5 
data were stored in an indoor air quality monitoring platform (IAQ 
Station) and recorded in real time using the Internet of Things (IoT) and 
Information and Communication Technology. We used a time-weighted 
average model to estimate individual PM exposure, which considers the 
duration and location of various activities to obtain more accurate 
measurements of individual PM exposure through time activity pattern 
analysis [34,35]. Indoor fine dust exposure was conducted for at least 
one week per quarter of pregnancy, and the calculation formula for 
estimating exposure was conducted according to the APPO study design 
[36]. According to the World Health Organization’s (WHO) air quality 
guideline, a concentration of PM2.5 over 15 µg/m3 is considered as the 
High PM2.5 group, and below 15 µg/m3 as the Low PM2.5 group. 

2.3. Targeted GC-MS metabolomics profiling 

Urine metabolites were extracted using liquid-liquid extraction. In-
ternal standard solution 100 μL (succinate-d4, alanine-d7 and trypto-
phan-d5 10 μg/mL, in water) was spiked to 50 μL of urine. Urea-free 
urine was processed using a biphasic extraction-based protocol as pre-
viously described [37]. Methanol 150 μL were added at urea removed 
urine for polar metabolites extraction. Chloroform 150 μL were added to 
precipitate the protein and separate the layer. The processed samples 
were vortexed for 1 min and centrifuged at 13,000g for 5 min. The 
chloroform layer was transferred to another tube, and the same process 
was repeated. Separated polar layer was filtered with 0.45 µm PTFE 
(Polytetrafluoroethylene) syringe filter and evaporated with nitrogen 
gas. The processed samples were then dried overnight in a vacuum 
centrifuge. For methoxyamination, 50 μL of 20 mg/mL methoxyamine 
hydrochloride solution in pyridine was added and incubated at 37 ℃ for 
90 min. Subsequently, 50 μL of N,O-Bis(trimethylsilyl) 
trifluoroacetamide with trimethylchlorosilane solution was added for 
trimethylsilylation, and the sample was incubated at 75 ℃ for 1 h. 
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Derivatized samples were centrifuged at 13,000 x g for 5 min and 
transferred to a glass vial. The derivatized urine metabolite extracts 
were analyzed using a Shimadzu QP2010 GC-MS system(Shimadzu Co.) 
equipped with a DB-5 ms column. One microliter of sample was injected 
in splitless mode and injection temperature was set at 270 ℃. The flow 
rate of the helium carrier gas was 1 mL/min. The GC oven initial tem-
perature set was 70 ℃ (2 min of hold time), ramped to 100 ℃ at 
4 ℃/min (held 3 min), ramped to 160 ℃ at 3 ℃/min (held 1 min), 
ramped to 200 ℃ at 4 ℃/min (held 2 min), and ramped 300 ℃ at 
8 ℃/min (held 10 min) for a total run time of 68 min. Interface and ion 
source temperature was 300 ℃ and 250 ℃. Ionization was conducted in 
the electron impact (EI) mode, and MS data were acquired in full scan 
mode over the 40–600 m/z range. 

Urinary metabolite profiles were analyzed using an optimized 
method to ensure reliability of the results. After excluding 10 metabo-
lites with a relative standard deviation greater than 30% from the 24 QC 
samples, 45 metabolites (14 sugars, six sugar alcohols, seven sugar acids, 
14 organic acids, and 4 amino metabolites) were used for multivariate 
statistical analysis (Supplementary Table 1. Metabolite identification). 

2.4. Data processing and statistical analysis 

Unsupervised principal component analysis (PCA) proved the reli-
ability of the urine metabolite data. PCA reduces high dimensionality 
data into a single principal component (PC) by scoring each metabolite 
as an individual variable, followed by extraction of cumulative scores of 
variables as a single PC [38]. The data table of 45 metabolites (variables) 
and 84 samples (observations) (sample n = 60 and QC n = 24) pre-
processed by Pareto scaling and sum normalization produced a PCA 
score plot with seven outliers from the confidence region. PCA was 
performed on 77 observations, including 27 high PM2.5, 26 low PM2.5, 
and 24 QC samples. The PCA score scatter plot with PC2 (12.6% vari-
ables) and PC3 (9.8% variables) clustered well between low and high 
PM2.5, while 24 QC samples were centered between the two groups, 
which indicates consistency in data acquisition and confidence in data 
processing and statistical analysis. (Supplementary figure 1. PCA score 
and scree plot) PC explains the variation of metabolites influenced by 
the maternal health response to PM2.5. 

The clinical information of the case-control group was analyzed as 
follows: categorical variables were analyzed using the Chi-square test 
and, if the number of cells with an expected frequency less than 5 is more 
than 20%, Fisher’s exact tests. Continuous variables were compared 
using Student’s t-test, and if it does not follow a equal distribution, the 
Mann-Whitney U test or. Statistical significance was defined as P < 0.05. 
All statistical analyses were performed using the Statistical Package for 
the Social Sciences (version 20.0) (Chicago, IL, USA). 

Metabolomic data were analyzed using Shimadzu GCMS Real Time 
analysis and postrun analysis. Metabolites were identified using the 
National Institute of Standards and Technology Mass Spectral Library 
(NIST08). The identification of sugar metabolites was confirmed by 
acquiring data from standard compounds, after which the retention 
indices and mass spectra were compared. All data were aligned using the 
MetAlign software, and parameters were set as described in a previous 
study [37]. The aligned peak lists were normalized to internal standard 
data. MetaboAnalyst 5.0 was used to acquire statistical analysis results. 
Following sum normalization and Pareto scaling, the processed data 
were used for multivariate statistical analysis. Principal component 
analysis (PCA) was used to assess data reproducibility and remove 
outliers. Orthogonal partial least squares-discriminant analysis 
(OPLS-DA) and univariate statistical analyses, including Student’s t-test, 
fold change (FC) analysis, and receiver operating characteristic (ROC) 
curves, were used to identify potential biomarkers. The elucidated bio-
markers were used for pathway enrichment analysis and pathway 
mapping using VANTED software (version 2.8.3) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database. OriginPro 2022 was 
used to produce a correlation heatmap between the metabolites and 
clinical parameters. Missing values were excluded by listwise deletion. 

3. Results 

3.1. Association between PM2.5 exposure and Pregnancy complication 

The average exposure concentration of the High PM2.5 group was 
22.76 μg/m3, and Low PM2.5 group was 4.211 μg/m3, showing a sta-
tistically significant difference (P < 0.05, Supplementary Table 2). 
There were no significant differences in clinical characteristics, 
including age, pre-pregnancy BMI, and socioeconomic status, between 
the High and Low PM2.5, but SGA and GDM were significantly increased 
in the high concentration group, respectively (P = 0.042, and 0.022,  
Table 1). 

3.2. Urine metabolic responses to maternal PM2.5 exposure 

Supervised statistical analysis using OPLS-DA and three different 
univariate statistical analyses (t-test, fold change, and receiver operating 
characteristic (ROC) curves) were used to elucidate urinary metabolite 
biomarkers. OPLS-DA distinctively clustered 27 high PM2.5 and 26 low 
PM2.5, based on 45 selected metabolite variables (Fig. 2a). OPLS-DA 
listed 15 biomarker candidates with variable importance for projec-
tion (VIP) values greater than 1.00 (Fig. 2b and Supplementary Table 3. 
VIP values). In unpaired t-tests and FC analysis, 17 metabolites satisfied 
a p-value <0.05, and FC (Log (High/Low) ratio) >1.5 or <0.66 

Fig. 1. Study flow chart. PM2.5, particulate matter 2.5; GC-MS, gas chromatography-mass spectrometry; OPLS-DA, orthogonal partial least squares discriminant 
analysis; ROC, receiver operating characteristic. 
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(Supplementary figure 2. Volcano plot and Supplementary Table 4, 5 t- 
test, Fold change,). The area under curve (AUC) from ROC curve is 
generally used to distinguish differences between variables in metab-
olomics studies, and AUC above 0.7 is commonly considered to indicate 
that prognostic model is of fair quality [39,40]. Therefore, a criterion of 
an AUC above 0.7 was set for biomarker candidates, resulting in 23 
metabolites meeting this condition in the comparison between low 
PM2.5 (n = 26) and high PM2.5 (n = 27) groups (Supplementary figure 
3. ROC curves of 23 metabolites). Four sugars (arabinose, ribose, xylose, 
and ribofuranose), 2 sugar alcohols (xylitol and threitol), one sugar acid 
(ribonic acid), six organic acids (pyroglutamate, cis-aconitate, succinate, 
malonate, propanoate, and tartronic acid), and 2 amino acid metabolites 
(alanine and glucosamine) were confirmed as biomarkers. Among the 
metabolites, only the pentose metabolites, xylose (FC 5.15), ribose (FC 
2.67), and arabinose (FC 2.58), were significantly upregulated at high 
PM2.5 (Fig. 2c), while the other biomarkers were downregulated 
(Fig. 2d). 

3.3. Metabolic pathways associated with maternal and neonatal outcomes 

For metabolic pathway enrichment analysis, MetaboAnalyst 5.0 
measures the significance of associated pathways within whole meta-
bolic pathway networks by calculating empirical p-value via mummi-
chog algorithm [41]. Pathway enrichment analysis using the 15 
metabolites identified 11 pathways that explained the influence of 
PM2.5 on metabolic pathway. Four pathways, pentose and glucuronate 

interconversions, citrate cycle, propanoate metabolism, and alanine, 
aspartate, and glutamate metabolism, showed p-values of < 0.05. 
(Fig. 3) Within the pentose and glucuronate interconversions, three 
upregulated metabolites (xylose, xylitol, and arabinose) were included, 
whereas the TCA cycle contained two metabolites (cis-aconitate and 
succinate). Propanoate metabolism consists of two metabolites (prop-
anoate and succinate), and alanine, aspartate, and glutamate meta-
bolism includes two metabolites (alanine and succinate). 

The metabolic networks of the 11 pathways investigated the 
pathway alterations caused by maternal PM2.5 exposure (Fig. 4). The 
whole pathway map with upregulated or downregulated urinary me-
tabolites centralized the pathway with the lowest p-value, pentose, and 
glucuronate interconversions, with close relationships with the other 
pathways. Three pentoses, which were the only upregulated metabo-
lites, were closely associated with the potential upregulation of the 
pentose phosphate pathway and pentose and glucuronate interconver-
sion. In particular, xylitol, a sugar alcohol, showed decreased expression 
in the high dose group, which may be related to an increase in xylose. 
Along with a consistent decrease in sugar alcohols, this could be a sig-
nificant pathway for understanding the mechanism of PM toxicity in 
mothers. In the TCA cycle, metabolites, such as cis-aconitate and suc-
cinate, displayed decreased expression in the high PM exposure group. 
Propanoate metabolism; glutathione metabolism; and alanine, aspar-
tate, and glutamate metabolism, which are associated with the TCA 
cycle, included significantly decreased metabolites, propanoate, pyro-
glutamic acid, and alanine, respectively. 

3.4. Pentose concentration and adverse pregnancy outcome 

According to the trend analysis for pregnancy complications ac-
cording to the concentration group of pentose metabolites, it was 
confirmed that the increase in ribose was significantly related to PTB 
and GDM (P = 0.044 and 0.049, Table 2), and the arabinose concen-
tration was significantly different from PTB (P = 0.044; Table 2). 

4. Discussion 

In this matched case-control study based on the PM2.5 exposure, we 
identified urinary pentose metabolites as biomarkers of PM2.5, and 
confirmed the possibility of their relationship with pregnancy 
complications. 

Similar to the studies that observed the relationship between PM2.5, 
PTB, GDM, and SGA in previous studies, it was confirmed that GDM and 
SGA increased significantly in High PM2.5 group in this study. Although 
data were not provided, according to the results of the APPO study, 
PM2.5, increased the risk of PTB, GDM, and SGA in a prospective cohort 
study. Regarding the mechanism by which fine dust causes PTB, the 
mechanism caused by DNA damage through an increase in oxidative 
damage stress, especially mitochondrial DNA modification due to DNA 
methylation in the umbilical cord blood or placenta, and the mechanism 
causing changes in hormone concentrations as an endocrine disruptor 
have been studied [42,43]. In a study to identify the pathogenesis of 
gestational diabetes, fine dust absorbed into the lungs caused an in-
crease in oxidative stress and systemic inflammation, and there was a 
mechanism by which particles were translocated into the circulation and 
increased endothelial dysfunction, increasing cardiovascular inflam-
mation. In addition, each particle increases the stress of b-cells in the 
pancreas, causing dysfunction of b-cells, increasing inflammation of fat 
cells, resulting in changes in adipokines, and reducing muscle glucose 
uptake, increasing insulin resistance, an increase in oxidative stress 
through an increase in placental inflammation may also be a mechanism 
[7]. Despite these hypotheses, few studies have explored biomarkers to 
predict pregnancy complications associated with PM2.5. However, in 
this study, we found a metabolite associated with PM2.5 exposure and 
suggested its potential as a biomarker. 

Among the increased metabolites, ribose is used as one of the 

Table 1 
Clinical characteristics of study population.  

Characteristics Low PM2.5 (n = 30) High PM2.5 (n = 30) P-value 

Age (years) 33.93 4.30 32.83 4.96 0.484c 

Pre-BMI (kg/m2) 21.93 3.54 21.78 2.94 0.352c 

Education level      
High school graduation 

or below 
2 6.67% 0 0% 0.143a 

University graduates 28 93.33% 30 100%  
Monthly income      
<4 million won 9 36.0% 13 48.1% 0.73a 

4–6 million won 7 28.0% 7 25.9%  
>6 million won 9 36.0% 7 25.9%  
Pregnancy methods      
Natural 25 83.3% 24 80% 0.587a 

IUI 1 3.3% 0 0%  
IVF-ET 4 13.3% 6 20%  
Pregnancy outcome      
GAB (wks) 38.89 0.86 38.50 1.29 0.193d 

PTB 0 0% 2 6.70% 0.157b 

SGA 0 0% 4 13.30% 0.042*b 

LGA 0 0% 1 3.30% 0.321b 

GDM 0 0% 5 16.70% 0.022*b 

Preeclampsia 0 0% 1 3.30% 0.321b 

Anomaly 0 0% 1 3.30% 0.321b 

NICU admission 0 0% 3 10% 0.08b 

Neonate Sex     0.683a 

Male 18 60% 16 53.30%  
Female 12 40% 14 46.70%  
Neonatal Outcome      
Birth weight (g) 3122.00 268.56 3184.33 493.14 0.595c 

Birth height (cm) 49.55 1.78 49.54 2.01 0.866c 

APGAR 1 min 8.70 0.95 8.10 0.96 0.171d 

APGAR 5 min 9.63 0.67 9.17 0.87 0.238d 

Categorical variables were expressed as frequencies (percentages) and analyzed 
using aChi-square or bFisher’s exact tests (if the number of cells with an expected 
frequency less than 5 is more than 20%). Continuous variables were expressed as 
mean ± standard deviation (SD) and were compared using the cStudent’s t-test 
or dMann–Whitney U test (if it does not follow a equal distribution),. BMI, body 
mass index; IUI, intrauterine insemination; IVF-ET, in vitro fertilization-embryo 
transfer; PM2.5, particulate matter 2.5. GAB, gestational age at birth; APGAR, 
appearance, pulse, grimace, activity, and respiration; PTB, preterm birth; SGA, 
small for gestational age; NICU, neonatal intensive care unit. * P < 0.05, 
considered statistically significant. 
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components of nucleic acids (DNA and RNA) to store and transmit ge-
netic information, and plays an important role in several biological 
processes [44]. The cause of the ribose increase in urine through these 
functions may be disorders of ribose metabolism, tissue damage, or 
inflammation [45,46]. Previous studies have suggested that fine dust 
causes DNA damage through oxidative stress, and because one of the 
pathogeneses of PTB is oxidative damage and inflammation, it is 

assumed that an increase in ribose can be detected in this process. 
According to a previous study on the increase of ribose in blood and 

urine when diabetes was present [47], there is a possibility that ribose 
may be an indicator of the occurrence of gestational diabetes. Addi-
tionally, poly (ADP-ribose) polymerase-1 (PARP1) expression has been 
reported as one of the mechanisms by which PM2.5 exhibits cytotoxicity 
and genotoxicity [48]. PARP1 regulates gene expression, and ribose is 

Fig. 2. Determination of PM2.5 exposure-related metabolites. (a) OPLS-DA score plot showing the separation of low PM2.5 (n = 26, green) and high PM2.5 (n = 27, 
red) groups. (b) Significant metabolites with a VIP score higher than 1.0. (c, d) Violin plots of 15 metabolites that are up-regulated (c) and down-regulated (d) in the 
PM2.5 exposure group. Green plots represent low PM2.5 levels and red plots represent high PM2.5 levels. 

Fig. 3. Metabolic pathway enrichment identified the most relevant metabolic pathways affected by PM2.5 exposure. (a) Pathway analysis plot with pathway impact 
(x-axis) and p-value (y-axis) represents the relevance of metabolic pathways. The size of the circle indicates the impact, while the color represents the significance, 
shown in (b) table. (b) Pathway lists associated with the urinary metabolites. Red highlight indicates the pathway with p < 0.05. 
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used in the process of repairing DNA damage; excess activity due to 
increased ribose may induce cell apoptosis [46]. Therefore, based on 
previous studies, this study suggests that increased ribose in urine is a 
biomarker for predicting PTB and GDM. 

There are few studies on arabinose and xylose in humans, but they 
can increase in urine when there is a decrease or abnormality in the 
enzymes that degrade them [49]. Although this study did not show an 
association between increased xylose levels and GDM, previous studies 
have suggested that maternal urine xylose levels are a predictive factor 
for GDM [50]. Xylose and arabinose are related to PTB and bacterial 
vaginosis in the vaginal fluid, therefore, the increase in this metabolome 
may be related to its association with microorganisms [51,52]. There-
fore, it is difficult to understand the pathogenesis of the arabinose and 
xylose excreted in this study, but they suggest the possibility of pre-
dicting factors for GDM and PTB, which may be related to the meta-
bolism of microorganisms. Similar to previous studies showing that the 
microbiome influences the development of metabolic syndrome caused 
by environmentally harmful factors, this suggests that research may be 
needed to reveal its indirect effects [53]. 

The most important pathway through urine metabolites was the 
pentose and glucuronate interconversion pathway, which is known to 
play an important role in cell metabolism, according to the KEGG 
pathway database [54]. Several intermediate products of the pentose 
and glucuronate interconversion pathways are associated with glycol-
ysis and the pentose phosphate pathway (PPP), which is involved in 
defense mechanisms against reactive oxygen species (ROS) [55]. Similar 
to previous studies, in which an increase in ribose in macrosomia cord 
blood and a related report on the pentose and glucuronate intercon-
version pathways were reported [56], the possibility that increased 
ribose in urine is related to macrosomia along with GDM can be 

suggested in this study. The citrate cycle plays a role in mitochondrial 
energy metabolism and plays an important role in almost all tissues and 
organs, especially in the energy-consuming tissues such as muscles, 
nerves, heart, and liver [54]. Propanate, alanine, aspartate, and gluta-
mate metabolisms are also important pathways for energy metabolism 
[54]. Air pollutants are inhaled in the respiratory tract and deposited in 
the airway mucosa, causing an inflammatory response, chemical sub-
stances that increase oxidative stress through oxidation, and cellular 
damage [57]. It is thought to have an effect by acting as a toxic substance 
and causing cell damage. 

Although the exact mechanism is difficult to understand, particulate 
matter is related to glucose metabolism through changes in the metab-
olomes of glucosamine, xylitol, tartraconic acid, succinic acid, ribofur-
anose, and thritol. Changes in alanine and pyoglutamic acid are related 
to the effects of amino acid metabolism. In addition, changes in prop-
anoid acid levels suggest an association with lipid metabolism, whereas 
changes in malonic acid levels suggest an effect on organic compound 
synthesis. Therefore, PM can affect not only carbohydrate metabolism, 
but also amino acids, lipid metabolism, and organic compound 
synthesis. 

To our knowledge, this is the first study to evaluate urine metabolites 
in pregnant Korean women with continuously measured indoor PM2.5 
concentration. The strength of this study is that the case-control group 
was selected from a prospective multicenter cohort study that investi-
gated the maternal and fetal health effects of PM on pregnancy in pa-
tients from various regions of South Korea. Compared with previous 
studies that measured only outdoor data, it was more reasonable to 
confirm the causal relationship between PM2.5 and pregnancy compli-
cations through the fine dust concentration measured using individual 
indoor air quality. In addition, through the discovery of biomarkers 

Fig. 4. Whole metabolic pathways of urinary metabolites associated with PM2.5 exposure. Each pathway statistically significant (p < 0.05)to the PM2.5 exposure 
was represented as # in the upper right corner. Metabolite biomarkers are colored red or blue (up or down-regulated in PM2.5 exposure) with a star in the upper right 
corner. Supplementary table 6 shows the abbreviation list of metabolites. 

S. Park et al.                                                                                                                                                                                                                                     



Reproductive Toxicology 124 (2024) 108550

7

capable of biomonitoring, we will be able to suggest that education 
regarding lifestyle changes, including smoking and cooking [17,20], and 
evaluate interventions such as using AMPK activators for metabolic 
disorders caused by PM2.5, may be considered before complications 
occur [58]. 

In our study, there are several limitations. While we conducted 
measurements of indoor PM2.5 for our subjects, the cumulative con-
centration during the entire pregnancy could not be calculated. Addi-
tionally, the indoor concentration values only represent those of the 
living room, introducing a potential limitation in capturing a compre-
hensive indoor exposure profile. Because the results of this study 
measured urine metabolites through excretion, there is a possibility that 
they may not show the same results as metabolites in the blood. In 
addition, it is difficult to determine the organ or cell involved in the 
mechanism of the study and it was difficult to analyze biological repli-
cates with small sample volumes. However, many existing studies sup-
port the evidence that the composition of blood and urine metabolites is 
similar; therefore, mechanism analysis using urine metabolite results 
will be able to reflect the biological mechanism. Another limitation is 
that the exposure of the study subjects is based on the average exposure 
of entire pregnancy and does not reflect the exposure level at the time of 
sample collection, in addition, the analysis of complications was difficult 
to determine causality due to the limitation of a small number of sub-
jects, making it difficult to confirm the causal relationship. 

5. Conclusions 

In this study, we identified urinary pentose metabolites (ribose and 
arabinose) as biomarkers of PM2.5 expose and confirmed the possibility 
of their relationship with pregnancy complications (PTB and GDM). 
Validation of the metabolite identified in this study as a marker for 
biomonitoring is required, and mediation analysis is needed to reveal 
the biological mechanism. As an exposure marker, this could be used as 
a tool to detect exposure to PM2.5, and prevent complications resulting 
from PM2.5. 
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