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Machine learning model 
for predicting immediate 
postoperative desaturation using 
spirometry signal data
Youmin Shin 1,2,7, Yoon Jung Kim 3,7, Juseong Jin 2,4, Seung‑Bo Lee 5, Hee‑Soo Kim 3,7* & 
Young‑Gon Kim 1,6,7*

Postoperative desaturation is a common post-surgery pulmonary complication. The real-time 
prediction of postoperative desaturation can become a preventive measure, and real-time changes 
in spirometry data can provide valuable information on respiratory mechanics. However, there is 
a lack of related research, specifically on using spirometry signals as inputs to machine learning 
(ML) models. We developed an ML model and postoperative desaturation prediction index (DPI) by 
analyzing intraoperative spirometry signals in patients undergoing laparoscopic surgery. We analyzed 
spirometry data from patients who underwent laparoscopic, robot-assisted gynecologic, or urologic 
surgery, identifying postoperative desaturation as a peripheral arterial oxygen saturation level below 
95%, despite facial oxygen mask usage. We fitted the ML model on two separate datasets collected 
during different periods. (Datasets A and B). Dataset A (Normal 133, Desaturation 74) was used for the 
entire experimental process, including ML model fitting, statistical analysis, and DPI determination. 
Dataset B (Normal 20, Desaturation 4) was only used for verify the ML model and DPI. Four feature 
categories—signal property, inter-/intra-position correlation, peak value/interval variability, and 
demographics—were incorporated into the ML models via filter and wrapper feature selection 
methods. In experiments, the ML model achieved an adequate predictive capacity for postoperative 
desaturation, and the performance of the DPI was unbiased.

Laparoscopic and robot-assisted approaches are commonly used in lower abdominal surgery1,2. These procedures 
require pneumoperitoneum and a steep Trendelenburg position3. An increase in intra-abdominal pressure and 
head-down position causes displacement of the diaphragm to the cephalad, promotes atelectasis, and reduces 
lung compliance and arterial oxygenation4–6. Pneumoperitoneum can decrease dynamic lung compliance and 
functional residual capacity7,8. When the functional residual capacity falls below the closing capacity, there is an 
increased risk of small airway obstruction and atelectasis4.

A previous prospective study reported that postoperative desaturation occurred in 37% of the patients under-
going laparoscopic surgery9. Perioperative desaturation is associated with myocardial infarction and acute kid-
ney injury10,11. Postoperative desaturation is a common pulmonary complication after surgery and may persist 
because of poor patient outcomes, such as brain damage and increased mortality12–15.

Modern anesthesia delivery systems provide real-time spirometry monitoring16. The spirometry signals 
exhibit changes owing to pneumoperitoneum and the steep Trendelenburg position. Specifically, the peak inspira-
tory pressure (PIP) significantly increases after position changes7,8; thus, patient positions can be classified 
based on the PIP signal. While real-time changes in spirometry data can offer valuable insights into respiratory 
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mechanics, it’s important to note that research utilizing spirometry signals has, until recently, remained excep-
tionally rare in the field.

A feasible early or real-time prediction of postoperative desaturation can become a preventive measure 
through appropriate anesthetic management interventions. Additionally, using spirometry signals as inputs for 
machine learning (ML) models has not been extensively studied. We anticipate contributing not only to improv-
ing patient prognoses through postoperative desaturation prediction but also to interpreting the significance of 
spirometry signals and expanding their clinical relevance.

In this study, we aimed to develop an ML model using intraoperative spirometry signal data, including PIP, 
airway pressure (AWP), and lung volume (VOL), for the Supine and Trendelenburg positions to predict the risk of 
immediate postoperative desaturation. We considered accessibility and clinical usefulness to select these signals. 
PIP, AWP, and VOL are easily accessible data during mechanical ventilation. PIP is manifested as one value per 
cycle per breath quantitatively, whereas AWP is collected not only during inspiration but also during expiration. 
Although PIP can be derived from AWP, we assumed that using PIP in conjunction with AWP would be use-
ful to utilize the information. AWP and volume form a spirometry loop, providing information regarding lung 
mechanics. In addition, previous studies reported that mechanical power was associated with ventilator-related 
lung injury17–19. AWP and VOL both play an important role in calculating mechanical power20.

We applied various feature extraction methods to utilize signal information as inputs to the model and 
selected important features through feature selection. Furthermore, we aimed to derive an index from the selected 
features for use in clinical settings, referred to as the postoperative desaturation prediction index (DPI).

The remainder of this paper is organized as follows. Section "Results" outlines the material and methods. 
Sections "Discussion" and "Conclusions" present the results and discussions, respectively. Section "Materials and 
methods" concludes the study.

Results
During the study period from January 2020 to April 2022, we analyzed 207 cases (Supplementary Fig. 1). Patient 
characteristics are summarized in Table 1. Postoperative desaturation in the post-anesthesia care unit occurred 
in 74 of the 207 patients.

Figure 1 shows the classification performance of the five models with respect to the different feature selec-
tion methods. When the sequential forward floating selection (SFFS) method, a wrapper-based feature selection 
method, was applied to the random forest (RF) model, the highest performance (AUROC = 0.856 (95% confi-
dence interval: 0.764–0.948)) was obtained. The classification performance on Dataset B was AUROC = 0.812 
(95% confidence interval: 0.740–0.885).

Ten features were selected including three from PIP, four from VOL, two from AWP, and one representing the 
relationship between VOL and AWP. Based on the patient position, seven were included for the Supine position, 
two for the Trendelenburg position, and one for the inter-position correlation (Table 2). Table 3 summarizes the 
results of the statistical analysis between the training and test sets of Dataset A, and normal and postoperative 
desaturation patients for the test set. None of the 10 selected features exhibited significant differences between 
the training and test set distributions. Out of the 10 features, six were statistically significant (p-value < 0.05). An 
additional LASSO feature selection found that five of the 10 features selected above were erased. Consequently, 
the five selected features are the outlier occurrence rate (Z-score based) of the PIP signal acquired during the 
Supine segment, the mean value of the PIP signal acquired during the Supine section, the median value of the vol-
ume signal acquired during the Supine section, the peak interval variability (PIV) of the volume signal acquired 
during the Supine section, and the mean value of the AWP signal acquired during the Trendelenburg section.

The remaining five features were used for DPI suggestion. DPI can be calculated using Eq. (1) when the 
regression coefficients of CSupine

Outlier ratio of PIP, C
Supine
Meanof PIP, C

Supine
Median ofVOL, C

Supine
PIVofVOL , and CTrendelenburg

MeanofAWP  are 8.00e-06, 
3.79e-02, respectively, where F1, F2, F3, F5 and F9 denote the values of each feature (Supplementary Table 1):

The clinical applicability of DPI using the selected features is shown in Fig. 2. In terms of prediction, DPI 
achieved AUROCs of 0.788 (95% confidence interval: 0.734–0.841) and 0.700 (95% confidence interval: 
0.650–0.750) on the test sets of Datasets A and B, respectively. The statistical significance of DPI performance 
was confirmed with a p-value of 0.001 for Dataset A, but no significance was shown with a p-value of 0.115 for 
Dataset B. The diagnostic performance of DPI for Dataset A was the highest when the threshold was set to 0.4, 
yielding an accuracy of 0.762, sensitivity of 0.600, specificity of 0.852, and PPV of 0.692. Supplementary Table 2 
provides detailed information on the diagnostic performance across different threshold adjustments.

Discussion
We developed an ML model and DPI to predict postoperative desaturation in patients who underwent robotic or 
laparoscopy-assisted lower abdominal surgeries using intraoperative spirometry signals. This study represents a 
novel approach to assessing the predictive capability of intraoperative spirometry for postoperative desaturation.

We attempted to extract the maximum number of features and subsequently employed a feature selection 
process to identify the most significant features. In the absence of feature selection, the RF model demonstrated 
superior performance (AUROC = 0.817). As shown in Fig. 1, when selecting features using the filter method, the 
support vector machine (SVM) model achieved the highest performance with an MI reference feature selection 
(AUROC = 0.819). The filter method can reduce the dimensionality of datasets21, and is simple and fast (Sup-
plementary Table 3)22.

(1)
DPI = C

Supine
Outlier ratio PIP ∗ F1+ C

Supine
Meanof PIP ∗ F2+ C

Supine
Median ofVOL ∗ F3+ C

Supine
PIVofVOL ∗ F5+ C

Trendelenburg
MeanofAWP ∗ F9
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Table 1.   Patient characteristics. Data are expressed as number (percentage), mean (standard deviation), or 
median (interquartile range). ASA-PS American Society of Anesthesiologists physical status classification 
system.

Characteristic (N = 207)

Age, yr (range) 63 (20–84)

Weight, kg 64.7 (10.2)

Height, cm 163 (7.1)

BMI, kg/cm2 24.3 (3.2)

Sex, female 92 (44.4%)

Operation

Gynecologic surgery 89 (43.0%)

Urologic surgery 117 (56.5%)

General surgery 1 (0.5%)

Surgical modality

Robot-approach 118 (57.0%)

Laparoscopic approach 89 (43.0%)

Underlying disease

Hypertension 66 (31.9%)

Diabetes mellitus 33 (15.9%)

Liver disease 15 (7.2%)

Lung disease 2 (1%)

Asthma 1 (0.5%)

Heart disease 6 (2.9%)

Thyroid disease 35 (16.9%)

Renal disease 6 (2.9%)

Neurologic disease 4 (1.9%)

Obesity 82 (39.6%)

Anemia 6 (2.9%)

ASA-PS classification

1 39 (18.8%)

2 159 (76.8%)

3 9 (4.3%)

Anesthesia time, h 3.0 [2.3–3.7]

Operation time, h 2.3 [1.8–3.0]

Urine output, mL 224 (207)

Estimated blood loss, mL 314 (242)

Infused volume, mL 1205 (670)

Figure 1.   Performance comparison in terms of AUROC. The figure shows the results of feature selection using 
wrapper [represented in red: sequential forward feature selection (SFFS), sequential backward feature selection 
(SBFN)], and filter methods (represented in blue, Chi-square, ANOVA F-value, Mutual information) and the 
results of without any selection (represented in green).
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The RF model achieved the best performance (AUROC = 0.856 and accuracy (ACC) = 0.810) when SFFS, a 
wrapper-based feature selection method, was applied. Although wrapper feature selection is computationally 
expensive and prone to overfitting, it typically outperforms the filter method21,23,24.

As summarized in Table 3, approximately half of the selected features exhibited no statistically significant dif-
ferences between the normal and postoperative desaturation groups. Although the filter method considers only 
the properties of individual features, wrapper feature selection is based on the performance achieved by attempt-
ing several combinations of features. The filter method can prevent overfitting effectively. However, it often fails 
to select the best features, as it overlooks feature interactions, assumes linear relationships, is insensitive to the 
learning algorithm, and lacks iterative feedback. Consequently, only a wrapper-based method can select features 
that are not statistically significant. Therefore, the wrapper method generally outperforms the filter method24.

In our experiment, RF outperformed the other ML models. Although their performances can vary depend-
ing on the dataset, RF outperformed extreme gradient boosting model (XGBM) and light gradient boosting 
model (LGBM) for several reasons: RF performs better when the features are highly correlated, has a built-in 
mechanism to handle correlated features effectively, and tends to be less sensitive to model complexity and hyper-
parameter setting. Furthermore, RF can handle high-dimensional data and reduce overfitting, whereas XGBM 
and LGBM may struggle with collinearity among features25,26. Among the 10 features selected through wrapper-
based feature selection, five were filtered from the additional LASSO selection to obtain the DPI. In situations of 
high-collinearity, RF can prevent overfitting and achieve superior performance. XGBM and LGBM performed 
poorly on the test set than on the training set, and RF performed similarly on both sets (Supplementary Fig. 2).

In terms of prediction, DPI achieved an AUROC of 0.788 on the test set of Dataset A, exhibiting a statisti-
cally significant difference between normal and postoperative desaturation patients (p-value = 0.001); however, 
the performance slightly degraded on Dataset B (AUROC = 0.700, p-value = 0.115). Owing to a lack of sufficient 
samples, specifically only four patients with postoperative desaturation, conducting a meaningful performance 
comparison presented a significant challenge. We believed that presenting a feasible index before the occurrence 
of an adverse event is important. For usability purposes, index that is quantifiable with consistency is desirable; 
therefore, we offered the DPI. In addition, this study could be a basis for further research to investigate whether 
DPI can improve patient outcomes.

The main features selected were the outlier ratio and average value of the PIP signal acquired from the 
Supine position, rather than during the pneumoperitoneum and head-down position. The initiation of 

Table 2.   Selected feature list with the highest performance in RF model and SFFS selection. PIP peak 
inspiratory pressure, VOL lung volume, AWP airway pressure, PVV peak value variability, PIV peak interval 
variability, KC Kendall rank correlation coefficient, PCC Pearson correlation coefficient.

Feature index Position Signal Feature type Feature name

F1 Supine PIP Signal property Z-score based Outlier ratio

F2 Supine PIP Signal property Mean

F3 Supine VOL Signal property Median

F4 Supine VOL Variability PVV (standard deviation)

F5 Supine VOL Variability PIV (root mean square of successive differences)

F6 Supine VOL, AWP Intra-position Correlation KC

F7 Supine AWP Variability Peak value variability (standard deviation)

F8 Trendelenburg PIP Signal property Standard deviation

F9 Trendelenburg AWP Signal property Mean

F10 Supine, Trendelenburg VOL Inter-position Correlation PCC

Table 3.   Statistical analysis for selected feature shown in Table 1 (“v” indicates features selected using LASSO 
feature selection). Data are expressed as numbers (percentages), means (standard deviations), or medians 
(interquartile ranges). PD postoperative desaturation.

Feature index Train Test p value Normal PD p value LASSO

F1 1681 [782 to 3428] 1773 [703 to 4307] 0.386 1601 [606 to 3439] 2105 [795 to 4581] 0.119 v

F2 14.8 [13.8 to 15.9] 15.3 [14.1 to 16.4] 0.067 14.7 [13.9 to 15.9] 15.7 [14.8 to 16.4]  < 0.001 v

F3 121.6 (37.2) 126.4 (32.2) 0.409 119.3 (32.7) 136.4 (31.8)  < 0.001 v

F4 65.4 [13.1 to 102.0] 64.7 [11.8 to 108.4] 0.466 47.2 [9.8 to 98.7] 99.5 [45.0 to 130.7]  < 0.001

F5 22.3 [12.5 to 44.0] 29.3 [16.0 to 63.0] 0.058 24.3 [13.6 to 56.8] 36.1 [16.2 to 66.6] 0.428 v

F6 0.52 (0.06) 0.53 (0.06) 0.119 0.53 (0.06) 0.54 (0.07) 0.256

F7 1.41 [1.18 to 2.56] 1.38 [0.86 to 1.98] 0.071 1.29 [0.83 to 2.05] 1.47 [1.13 to 2.00] 0.029

F8 2.03 [1.56 to 3.12] 2.20 [1.80 to 2.84] 0.370 2.16 [1.69 to 2.89] 2.18 [1.82 to 2.77] 0.356

F9 11.5 [10.3 to 14.2] 11.5 [10.3 to 12.8] 0.316 10.8 [9.9 to 12.1] 12.6 [11.5 to 14.3]  < 0.001 v

F10 0.00 [− 0.04 to 0.01]  − 0.00 [− 0.02 to 0.02] 0.268 0.00 [− 0.01 to 0.02]  − 0.00 [− 0.10 to 0.00]  < 0.001
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pneumoperitoneum and the head-down position rapidly decreased lung compliance7,8. Here, the absolute 
increase in PIP caused by pneumoperitoneum and the head-down position could potentially pose challenges 
for ML algorithms in distinguishing between desaturation and non-desaturation cases.

Our study revealed an intriguing finding: the variability in the respiration cycle while in the Supine posi-
tion was chosen as a feature in our model. Volume signal variability is represented by the peak interval of the 
volume curve, which corresponds to the duration of each breath. Our analysis focused solely on the mechani-
cal ventilation periods. This finding might suggest that modulation of the respiratory rate before the surgical 
procedure affects the pulmonary system. High respiratory rates are reported to be associated with reduced 
ventilation-induced lung injuries27, and respiratory rate is also known to be an important factor in the calcula-
tion of mechanical power, a concept that has recently gained attention17,28. However, the impact of its variability 
is still unknown, and further research is necessary. Although the ML approach employed in our study could 
not distinguish the specific cause, the respiratory rate may have changed to eliminate carbon dioxide or cor-
rect hyperventilation. To further evaluate the effects of changes in respiratory rate on pulmonary mechanics, a 
prospective study with better control over other variables is warranted.

Another feature selected is the median volume value. Extending the time to maintain a high volume could 
be unfavorable for lung protection. High tidal volume affects respiratory system compliance and is associated 
with increased mortality and fewer ventilator-free days29,30. Recently, there has been a growing argument that 
the titration volume is more crucial than PEEP titration for lung protection, which aligns with the findings of 
our model31. Valuable information on factors associated with postoperative desaturation can be extracted from 
PIP and VOL signals in the Supine position obtained in the early intraoperative period. The capacity to partially 
explain postoperative desaturation using pre-existing features offers optimism for the feasibility of early inter-
ventions, which could potentially lead to improved patient outcomes.

Among the parameters obtained during pneumoperitoneum and the head-down position, the AWP signal was 
selected. Changes in position and intra-abdominal pressure led to a sudden focal increase in AWP. This increase 
in AWP may be attributed to diminished compliance and resistance32. Excessive AWP can potentially result 
in barotrauma, which provides a rationale for selecting it as a feature. Moreover, most mechanical ventilation 
machines incorporate pressure limits to mitigate the risk of barotrauma33. This limit reduces the tidal volume 
when excessive AWP is detected, and such insufficient ventilation could subsequently lead to the development 
of atelectasis. Consequently, patients exhibiting significant fluctuations in AWP may be more susceptible to 
postoperative desaturation.

This study has several limitations. First, the interpretations given to the acquired DPI and selected features 
need to be validated. As there are no relevant prior studies to draw upon for interpreting the results of this study, 
the conclusions can only be tentative. Further clinical studies are required to confirm these findings. Second, 
we did not verify whether the same results could be achieved using other institutions or other equipment. We 
evaluated the performance of the ML model and DPI for another holdout dataset (Dataset B), and all data were 

Figure 2.   Performance comparison of DPI. (a, c) DPI performance on the test set of Dataset A (a AUROC, c 
statistic). (b, d) DPI performance on Dataset B (b AUROC, d statistic).
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collected from different periods with the same equipment. Although external validation from other institutions 
would have been ideal, we encountered challenges in finding an institution that allowed retrospective review of 
volume and AWP data through the VitalDB repository with consistent ventilator settings. A prospective study 
is necessary to validate these results.

Conclusions
This study demonstrated the potential of spirometry signals in improving patient prognosis by predicting post-
operative desaturation. These signals hold significance in terms of interpreting their meaning and expanding 
their importance. Our ML model exhibited fair predictive ability on Datasets A and B; however, the performance 
of DPI was not satisfactory on Dataset B owing to a significant data imbalance, posing challenges for accurate 
analysis. To validate our model and DPI, further large-scale studies are essential.

Materials and methods
Data sources
This retrospective study was approved (number: 2206-090-1332) by the Institutional Review Board (IRB) of 
Seoul National University Hospital, Seoul, Korea on June 16, 2022. The patient data was anonymized prior to 
analysis, and the IRB of the Seoul National University Hospital waived the requirement for informed consent. 
Our study followed the principles of the Declaration of Helsinki and adhered to the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) Statement.

Datasets
The study cohort comprised patients who underwent laparoscopic, robot-assisted gynecologic, or urologic sur-
gery at Seoul National University Hospital from January 2020 to April 2022. The inclusion criteria were patients 
undergoing laparoscopic or robot-assisted surgery. The exclusion criteria were as follows: missing data of oxygen 
saturation via pulse oximetry in the post-anesthesia care unit; short surgery duration (< 1.5 h); surgery converted 
into the open method; patients with unexpected events during surgery, such as excessive bleeding and intraopera-
tive lung injury; and technical error in collecting spirometry data. Oxygen desaturation in the post-anesthesia 
care unit was defined as SpO2 < 95% despite facial oxygen mask application34,35. Details of patient inclusion and 
exclusion are provided in Supplementary Fig. 1.

Two datasets acquired from the same institution at different time points were used.

1.	 Dataset A: This was used for the entire experimental process, including ML model fitting, statistical analysis, 
and DPI suggestion. Out of 207 patient observations, 42 (Normal 27, Desaturation 15) randomly extracted 
patient observations were designated as the test set, and the remaining 165 (Normal 106, Desaturation 59) 
data samples were divided using five-fold stratification to select features and evaluate ML models.

2.	 Dataset B: This was used to verify the experimental results. We collected data from 24 patients (Normal 20, 
Desaturation 4) at the same institution during different periods.

Data are expressed as numbers (percentages), means (standard deviations), or medians (interquartile ranges). 
The term ASA-PS refers to the American Society of Anesthesiologists physical status classification system.

Data preprocessing
During surgery, bio-signals were acquired with VitalDB36. The spirometry signals were converted into digital 
form at a sampling frequency of 15 Hz. The position separation rules were as follows:

1	 Supine position section start: The initial time point when the PIP value reaches or exceeds 0.3 and the differ-
ence between successive PIP values remains at 0.1 or less for 5 min

2	 Supine position section end: If the PIP value exceeds 0.7 consecutively after the start of the Supine position 
section

3	 Trendelenburg position section start: The starting point of a high PIP value, when the PIP value is ≥ 0.7 for 
5 min

4	 Trendelenburg position section end: After the start of the Trendelenburg position, when two consecutive drops 
in the PIP values are less than 0.5

To reduce the errors that may occur in position separation owing to the fluctuation of the PIP signal, we 
applied Gaussian smoothing ( σ = 60× sampling frequency ) to decrease noise and variations in the dataset. 
The smoothed PIP signal was normalized using minimum–maximum scaling. Signal extraction at the correct 
position was important for the analysis. To reflect spirometry signal changes due to position alterations and to 
improve the accuracy of the rule base, only 80% of the center of each “Supine” was considered.

Feature extraction
To adjust for the difference in the length of individual surgical time and obtain stable features, we divided the 
entire Supine and Trendelenburg position sections into 20 windows. Each window comprised 2000 observations 
( ≈ 133.3 s, 2000/sampling frequency ). The window-to-window overlap size was adjusted based on the length of 
each position ( size = length of position−window size

total# window  ). For samples larger than 400,000, we maximized the distance 
between each window. Except for demographic features and the total signal length, the average value from the 
extracted 20 windows was used as the input for the ML models (Fig. 3b,c).
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The features we extracted in this study were largely divided into four types: Detailed information is presented 
in Supplementary Table 4.

1	 Demographic features: A total of four features regarding the clinical information of patients such as sex, age, 
weight, and height were used.

2	 Signal property: A total of 44 features regarding signal properties such as total length, average, median, skew-
ness, kurtosis, standard deviation, and outlier ratios of the signals were calculated.

3	 Demographic features: A total of four features regarding the clinical information of patients such as sex, age, 
weight, and height were used.

4	 Correlations: A total of 20 features regarding the positional correlation were extracted.
	   Inter-position correlations: The correlations for the windows obtained in the Supine and Trendelenburg 

positions were calculated. The Pearson correlation coefficient (PCC), Spearman correlation coefficient (SCC), 
Kendall rank correlation coefficient (KC), coherence, and dynamic time warping (DTW) were calculated.

	   Intra-position correlation: This correlation was obtained in the Supine and Trendelenburg positions. A 
correlation analysis between AWP and VOL was performed using PCC, SCC, KC, coherence, and DTW.

4	 Peak value/interval variability: A total of 108 features were extracted regarding peak-related variabilities. 
Peak detection was performed for each AWP and VOL signal to extract the peak values and their intervals. 
Variability features were extracted for both peak values and intervals using the heart rate variability analysis 
function, the measure of the variation in time intervals between consecutive heartbeats using both time- and 
frequency domain measures37.

Feature extraction was conducted solely on the signal properties of PIP signals. They are not periodic signals, 
and the correlation between the PIP, AWP, and VOL signals has no clinical significance.

Feature selection
Feature selection was performed to improve the performance of the ML model and reduce the risk of overfitting. 
A total of 176 features were used, and feature selection was performed using two approaches (Supplementary 
Fig. 3) commonly used in classification tasks:

1	 Filter methods: Filtering was performed without a predictive model24. Three commonly used strategies (i.e., 
Chi-Square, ANOVA F-value, and mutual information) were employed.

2	 Wrapper methods: Wrapper methods use a search algorithm to evaluate different subsets of features and select 
the optimal subset that achieves the best performance for a given ML model. SFFS and sequential backward 
floating selection, which generally exhibit high performance, were adopted23,38.

Figure 3.   Data preprocessing and feature extraction diagram. (a) Supine and Trendelenburg position sections 
are separated based on the PIP signal, and 80% of the center of each position section was used to reflect 
spirometry signal changes and to improve the inaccuracy of the rule base. (b, c) Each Supine and Trendelenburg 
position section were divided into 20 windows.
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Classification
Five different commonly used ML models in the healthcare field were used, namely RF, XGBM, LGBM, k-nearest 
neighbors (KNN), and SVM39,40. The setting of the hyperparameters was focused on preventing overfitting. 
Detailed information on hyperparameters is presented in Supplementary Table 5. The optimal feature selection 
method and resulting selected features were designated based on the average area under the receiver operating 
characteristic curve (AUROC) during five-fold stratification.

Statistical analysis
Based on a normality test using the Shapiro–Wilk test, an independent T-test and Mann–Whitney statistical 
analysis were performed for normal and non-normal distribution features, respectively. For a small sample size, 
the normality test may more likely reject the null hypothesis. To address this, we set a stringent significance level 
(p-value = 0.01) for the Shapiro–Wilk test.

DPI suggestion
The DPI, which provides only quadratic operations of selected features, can be used as a more intuitive and reli-
able prediction tool. After LASSO feature selection41, the DPI was presented through multivariate linear regres-
sion and fitted based on the mean squared error to minimize the residual sum of squares between observed and 
predicted targets42. LASSO selection is an embedded feature selection method that is more suitable for regression 
than classification because it removes the multicollinearity between features43.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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