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Histopathologic image–based deep learning
classifier for predicting platinum-based
treatment responses in high-grade serous
ovarian cancer

Byungsoo Ahn 1,13, Damin Moon 2,13, Hyun-Soo Kim 3,13, Chung Lee1,
Nam Hoon Cho1, Heung-Kook Choi2, Dongmin Kim 2, Jung-Yun Lee 4,
Eun Ji Nam4, Dongju Won5, Hee Jung An6, Sun Young Kwon7, Su-Jin Shin8,
Hye Ra Jung7, Dohee Kwon1, Heejung Park1, Milim Kim1, Yoon Jin Cha8,9,
Hyunjin Park8, Yangkyu Lee8, Songmi Noh10, Yong-Moon Lee11, Sung-Eun Choi6,
Ji Min Kim12, Sun Hee Sung12 & Eunhyang Park 1

Platinum-based chemotherapy is the cornerstone treatment for female high-
grade serous ovarian carcinoma (HGSOC), but choosing an appropriate
treatment for patients hinges on their responsiveness to it. Currently, no
available biomarkers can promptly predict responses to platinum-based
treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC
(PathoRiCH), a histopathologic image–based classifier. PathoRiCHwas trained
on an in-house cohort (n = 394) and validated on two independent external
cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor
response groups show significantly differentplatinum-free intervals in all three
cohorts. Combining PathoRiCH with molecular biomarkers provides an even
more powerful tool for the risk stratification of patients. The decisions of
PathoRiCH are explained through visualization and a transcriptomic analysis,
which bolster the reliability of our model’s decisions. PathoRiCH exhibits
better predictive performance than current molecular biomarkers. PathoRiCH
will provide a solid foundation for developing an innovative tool to transform
the current diagnostic pipeline for HGSOC.

Epithelial ovarian cancer is the most common gynecological malig-
nancy and the eighth leading cause of cancer-related deaths among
females worldwide1. Most epithelial ovarian cancers are high-grade
serous ovarian carcinoma (HGSOC), characterized by advanced stages
(III and IV) at initial diagnosis, rapid progression with widespread dis-
semination, and poor prognosis. For patients with advanced HGSOC,
the 5-year survival rate is approximately 25%2. Platinum-based che-
motherapy following debulking surgery is the standard treatment for
HGSOC. However, clinical responses to platinum therapy vary3–5: only

20% of advanced-stage patients show a favorable treatment response
and long-term survival, whereas the remaining 80% relapse within two
years and are left with limited treatment options4,5.

Poly ADP-ribose polymerase (PARP) inhibitors, which exploit DNA
repair vulnerabilities, have rapidly become game changers in ovarian
cancer treatment6–8. The best predictors of sensitivity to PARP inhibi-
tors are the platinum-treatment response, BRCA1/2 (BRCA) mutation
status, and homologous recombination deficiency (HRD) status. These
predictors have limitations, however. To determine whether an
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individual is platinum-sensitive or -resistant, patients must undergo
several cycles of chemotherapy and experience related adverse events.
Although various genomic, transcriptomic, and proteomic biomarkers
have been proposed to predict the outcomes of platinum-based che-
motherapy, none has yet been introduced into standard clinical
practice6,8–10. In addition, genomic assays for BRCAmutations andHRD
status are expensive, entail a long turnaround time, and require tumor
DNA/RNAsamples for analysis,making themchallenging to implement
in every patient with HGSOC, especially in low-resource settings11,12.

To initiate adjuvant chemotherapy for HGSOC, a pathological
diagnosis based on hematoxylin and eosin (H&E)-stained whole slide
images (WSIs) is essential. Those histopathological images might
contain vital information about the biological behaviors of tumors and
could be critical for predicting chemo-responsiveness. HGSOC exhi-
bits various histopathologic features, but so far, no one has identified
pathologic factors that predict clinical outcomes. Recently, the com-
bination of deep learning and digital pathologic imaging has made it
possible to automate routine diagnostic tasks, such as cancer detec-
tion, grading, and subtyping13,14. In addition, it has provided a way to
discover previously unrecognized prognostic morphological traits
that can be used to predict treatment responses and outcomes or to
infer the molecular characteristics of tumors15–21. Although several
studies have tried to predict the clinical outcomes or molecular fea-
tures of HGSOC from histopathological tumor images, most had small
sample sizes, lacked external validation, or did not demonstrate the
reliability of their models22–26. Therefore, the predictive power of his-
tology in HGSOC needs to be further investigated.

In this work, we used various multiple instance learning (MIL)
models that use only histopathological images to predict responses to
platinum-based treatment in female HGSOC. In doing so, we were able
to develop a robust MIL model that we call the Pathologic Risk Clas-
sifier for HGSOC (PathoRiCH). PathoRiCH was trained with HGSOC
cohort and it exhibits significant predictive performance. In addition,
combining PathoRiCH with current molecular biomarkers provides an
even more powerful risk stratification method for patients with
HGSOC. To demonstrate the reliability of our model, we visualized the
model outputs and analyzed the molecular characteristics of the pre-
dicted groups. Application of this model will provide information that
is clinically relevant for guiding patient-tailored therapy in HGSOC.

Results
Cohort characteristics
We analyzed 814 patients with HGSOC: 394 patients (WSI n = 754)
treated at Yonsei Severance Hospital (SEV cohort), 284 patients (WSI
n = 516) from the Cancer Genome Atlas Ovarian Cancer (TCGA-OV)
database (TCGA cohort), and 136 patients (WSI n = 136) treated at
Samsung Medical Center (SMC cohort). The clinicopathological char-
acteristics of each cohort are summarized in Table 1. The patients were
classified into four groups according to their platinum-free interval
(PFI), the time between the last platinum-based chemotherapy cycle
and the first recurrence: “platinum-resistant” (PFI ≤ 6 months), “par-
tially platinum-sensitive” (PFI 6–12 months), “platinum-sensitive” (PFI
12–24months), and “very platinum-sensitive” (PFI > 24months)27,28. To
predict the responses to platinum-based therapy, we used 12-month
cut-off and classified “platinum-resistant” and “partially platinum-
sensitive” patients as the poor response group and “platinum-sensi-
tive” and “very platinum-sensitive” patients as the favorable response
group. For BRCA mutation and HRD status prediction, patients with
available BRCA mutation or HRD status results (n = 767 and n = 284,
respectively) were evaluated.

MIL models
We investigated six different MIL models using two image areas (all-
tissue and cancer-segmented areas) and threemagnifications (5×, 20×,
and a combination of 5× and 20×). An overview of the proposed MIL

model is presented in Fig. 1. For the cancer-segmented area, a cancer
segmentation model pretrained with invasive breast ductal carcinoma
automatically labeled the cancer areas (Supplementary Fig. 1). The
cancer-segmented area demonstrated good overall concordance with
the pathologist-annotated cancer area across both the internal (SEV)
and external (TCGA) cohorts, achieving Dice coefficients of 0.781 and
0.836, respectively (Supplementary Table 1 and Supplementary Fig. 2).
For the all-tissue and cancer-segmented area models, 17,742,605 and
3,822,597 patches were trained, respectively. The imagemagnification
settings were based on the usual approach to pathological diagnoses:
low-magnification (5×) for architectural-level evaluation, high-
magnification (20×) for cytologic-level evaluation, and multiscale
levels to integrate information from the 5× and 20× images.

Five-fold cross-validation of the SEV cohort was used for training
and internal validation. In the internal (SEV) validation, the all-tissue
area MIL generally showed better performance than the cancer-
segmented area MIL (Table 2). Specifically, the all-tissue area 5×

Table 1 | Patient characteristics of all cohorts in high-grade
serous ovarian carcinoma

All cohorts (N = 814)

SEV TCGA SMC
(N = 394) (N = 284) (N = 136)

Number of WSIs 754 516 136

Age 53.9 ± 10.9 59.8 ± 11.2 56.9 ± 8.7

Stage

I 0 (0.0%) 12 (4.2%) 12 (8.8%)

II 0 (0.0%) 24 (8.5%) 14 (10.3%)

III 214 (54.3%) 227 (79.9%) 77 (56.6%)

IV 180 (45.7%) 20 (7.0%) 33 (24.3%)

Not available 0 (0.0%) 1 (0.4%) 0 (0.0%)

BRCA mutation status

Mutant 65 (16.5%) 19 (6.7%) 28 (20.6%)

Wildtype 148 (37.6%) 265 (93.3%) 107 (78.7%)

Unknown 181 (45.9%) 0 (0.0%) 1 (0.7%)

HRD status (Telli et al.)33

Positive 0 (0.0%) 153 (55.4%) 0 (0.0%)

Negative 0 (0.0%) 114 (41.3%) 0 (0.0%)

Unknown 0 (0.0%) 9 (3.3%) 0 (0.0%)

HRD status (Takaya et al.)34

Positive 0 (0.0%) 140 (49.3%) 0 (0.0%)

Negative 0 (0.0%) 139 (48.9%) 0 (0.0%)

Unknown 0 (0.0%) 5 (1.8%) 0 (0.0%)

HRD status (Perez-Villatoro et al.)35

Positive 0 (0.0%) 68 (23.9%) 0 (0.0%)

Negative 0 (0.0%) 15 (5.3%) 0 (0.0%)

Not evaluated 0 (0.0%) 29 (10.2%) 0 (0.0%)

Undefined 0 (0.0%) 172 (60.6%) 0 (0.0%)

Platinum response groups

Platinum-resistant (PFI <
6 mo)

73 (18.5%) 12 (4.2%) 6 (4.4%)

Partially platinum-
sensitive (PFI 6–12 mo)

59 (15.0%) 47 (16.5%) 32 (23.5%)

Platinum-sensitive (PFI
12–24 mo)

85 (21.6%) 128 (45.1%) 2 (1.5%)

Very platinum-sensitive
(PFI > 24 mo)

177 (44.9%) 97 (34.2%) 96 (70.6%)

HRD homologous recombination deficiency,momonths, PFI platinum-free interval,WSIswhole
slide images.
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magnification model showed the best performance, achieving an
average area under the receiver operating characteristic curve (AUC-
ROC) value of 0.627. However, in the external (TCGA) validation, the
cancer-segmented area 20× magnification model showed the best
performance, with AUC-ROC values of 0.602, and the performance of
the 5× models showed the largest decrease among the all-tissue and
cancer-segmented area MILs. The multiscale models exhibited inter-
mediate performance between the 5× and 20× models in both the all-
tissue and cancer-segmented area MILs. To confirm that result, we
performed ensemble techniques using both 5× and 20× images of the
cancer-segmented areas (Supplementary Table 2). Compared with the
soft andhardvoting ensemblemodels, the cancer-segmented area 20×
magnification model showed superior performance.

PathoRiCH+BRCA+HRD shows the best PFI prediction ability
To achieve a balanced good performance across the internal and
external validations, we opted for the cancer-segmented area 20×
magnification MIL and termed it PathoRiCH. In the Kaplan–Meier
analysis, the favorable and poor groups determined by PathoRiCH in
the internal (SEV) and external (TCGA) validation cohorts showed
significantly differentiated PFIs (p <0.001 and p = 0.032, respectively)
(Fig. 2a, b). PathoRiCH also showed significantly different distributions
of the four PFI groups (PFI ≤ 6 months, 6–12 months, 12–24 months,
and >24 months) in the two cohorts: p =0.036 and p <0.001, respec-
tively (Supplementary Fig. 3). When the PathoRiCH results were com-
bined with the BRCA and HRD status (PathoRiCH+BRCA+HRD) in the
TCGA cohort, the patients could be further stratified into four

Fig. 1 | Overview of our multiple instance learning models. Patches of varying
magnifications (5× and 20×) were extracted from the whole-slide images (WSIs).
Thepatcheswere thenprocessed using automatedcancer segmentation to exclude
patches without cancer cells and fed into a contrastive self-supervised learning
algorithm (blue arrow path). Alternatively, all patches, including those without
cancer cells, could be fed directly into the self-supervised learning algorithm to

include all tissues in theWSIs (red arrow path). Separate multiple instance learning
(MIL) methods were used for two single scales and one multiscale magnification
setting (5×, 20×, and both) for each image area. Therefore, six differentMILmodels
were generated. For the multiscale MILs, feature pyramids were formed by con-
catenating the embeddings of different scales of WSIs to train the MIL aggregator.

Table2 | Performanceofmultiple instance learningmodels in internal (SEV) andexternal (TCGAandSMC) validation cohorts in
predicting platinum-based treatment response groups

All-tissue area MIL Cancer-segmented area MIL

5× 20× Multiscale 5× 20× Multiscale

Internal validation (SEV cohort) AUC-ROCa 0.627 ± 0.047 0.610 ±0.04 0.623 ±0.016 0.604 ±0.05 0.596 ±0.072 0.614 ± 0.046

Precision 0.495 0.605 0.565 0.521 0.465 0.507

Recall 0.663 0.411 0.545 0.468 0.675 0.525

F1 score 0.559 0.462 0.517 0.470 0.522 0.507

K-M p valueb 0.000 0.000 0.000 0.000 0.000 0.000

External validation (TCGA cohort) AUC-ROC 0.492 0.594 0.575 0.532 0.602 0.573

Precision 0.187 0.253 0.232 0.519 0.406 0.407

Recall 0.879 0.484 0.429 0.250 0.528 0.481

F1 score 0.309 0.332 0.301 0.338 0.459 0.441

K-M p valueb 0.108 0.004 0.000 0.000 0.032 0.036

External validation (SMC cohort) AUC-ROC - - - - 0.593 -

Precision - - - - 0.351 -

Recall - - - - 0.711 -

F1 score - - - - 0.470 -

K-M p valueb - - - - 0.030 -

AUC-ROC area under the receiver operating characteristic curve, K-M Kaplan–Meier analysis (two-sided), MILmultiple instance learning.
aFrom 5-fold cross validation.
bBased on platinum-free interval.

Article https://doi.org/10.1038/s41467-024-48667-6

Nature Communications |         (2024) 15:4253 3



subgroups, favorable–BRCA/HRD-positive (47.8%), favorable–BRCA/
HRD-negative (31.7%), poor–BRCA/HRD-positive (10.4%), and
poor–BRCA/HRD-negative (10.1%), enabling more precise risk stratifi-
cation than using only molecular biomarkers. The favorable–BRCA/
HRD-positive group showed the best PFI, the favorable–BRCA/HRD-
negative group showed moderate PFI, and the poor–BRCA/HRD-posi-
tive and poor–BRCA/HRD-negative groups showed the worst PFI
(p < 0.001) (Fig. 3a). Furthermore, PathoRiCH+BRCA+HRD–defined
subgroups showed significantly different distributions of the four PFI
groups (p = 0.001) (Fig. 3b). For comparison, the Kaplan–Meier ana-
lyses for the ground truth favorable and poor response groups in the
internal (SEV) and external (TCGA) validation cohorts are shown in
Supplementary Fig. 4.

We next assessed PathoRiCH’s performance in an additional
independent external (SMC) validation cohort, and PathoRiCH yielded
an AUC-ROC value of 0.593 (Table 2). In SMC cohort, the PathoRiCH-
predicted favorable and poor response groups also demonstrated a
statistically significant difference in PFIs (p = 0.030) (Fig. 2c) and sig-
nificantly different distributions of the four PFI groups (p < 0.001)
(Supplementary Fig. 3). Because the SMC dataset does not provide
HRD results, the PathoRiCH+BRCA +HRD combination was not avail-
able. For comparison, the Kaplan–Meier analyses for the ground truth
favorable and poor groups is shown in Supplementary Fig. 4.

PathoRiCH was identified as an independent prognostic factor
In the external (TCGA) validation cohort, the PathoRiCH-predicted
groups exhibited no significant associations with age, BRCA mutation
status, and HRD status, but FIGO stage was significantly associated
(p < 0.001) (Supplementary Table 3). In univariate Cox regression
analyses, PathoRiCH exhibited the strongest association with PFI
(p < 0.0001), followed by FIGO stage (p = 0.001), BRCA status
(p = 0.026), HRD status (p =0.010), and BRCA+HRD status (p =0.011)
(Supplementary Table 4). Age, however, did not show a significant
association with PFI. In a multivariate Cox regression analysis,
PathoRiCH was identified as the strongest independent prognostic
factor (p <0.0001), with a hazard ratio of 1.947 (95% confidence
interval = 1.350–2.808, p < 0.001), and FIGO stage and BRCA status
were also identified as independent prognostic factors (p = 0.005 and
p =0.32, respectively) (Fig. 4a). The Kaplan–Meier plots and distribu-
tions of the four PFI groups according to BRCA mutation and HRD
status are shown in Supplementary Fig. 5a.

In the external SMC validation cohort, the PathoRiCH-predicted
groups displayed no significant associations with any of the clinical or
molecular variables (Supplementary Table 3). In univariate Cox
regression analyses, similar to the TCGA cohort, FIGO stage
(p = 0.003), BRCA status (p =0.026), and PathoRiCH (p = 0.027) dis-
played statistical significance (Supplementary Table 4). Of them, the

Fig. 2 | Kaplan–Meier survival analysis of the cancer-segmented area 20×
magnification multiple instance learning model (PathoRiCH). Two-sided
Kaplan–Meier survival analysis was used. a In the internal validation, the
PathoRiCH-predicted favorable and poor groups exhibited significant differences
in the platinum-free interval (PFI) and overall survival (OS) (p = 4.17E-05 and

p = 8.73E-05, respectively). b Analysis of the TCGA external validation cohort
revealed significant patient stratification for PFI (p =0.032) and OS (p = 1.06E-09).
c The SMC external validation cohort also showed significant patient stratification
for PFI (p =0.030), but it did not reach statistical significance for OS (p =0.54).
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FIGO stage (p =0.003) and PathoRiCH predictions (p =0.038) were
identified as independent prognostic factors (Fig. 4b). The
Kaplan–Meier plots and distributions of the four PFI groups according
to BRCAmutation are shown in Supplementary Fig. 5b.

Visualization analysis
Because PathoRiCH makes decisions based on the predicted prob-
abilities of being in the favorable or poor group, we generated three
attention maps: for the favorable group prediction, poor group pre-
diction, and combined prediction (Fig. 5). Based on the hypothesis that
patients with extreme treatment responses might harbor more pre-
dictive histologic features than those with midrange responses, we
extracted high-scoring patches for the 40 cases (WSI n = 76) with
highly favorable and poor response in the SEV cohort (patch n = 3500,
respectively). By applying the Gaussian mixture model (GMM)

clustering algorithm and pathologists’ evaluations, we classified the
high-scoring patches for the favorable and poor groups into four his-
tologically distinct clusters, respectively. In the favorable group,
unique clusters showing “intratumoral lymphocytic infiltration” and
“small monotonous nuclei with high cellularity” were identified
(Fig. 6a). Conversely, “hyperchromatic nuclei with poor cohesiveness
and spindling features” and “cytoplasmic vacuoles and microcystic
change” were distinct histologic features in the poor group (Fig. 6b).
The remaining clusters showed overlapping histologic features in both
groups.

When the high-scoring patches for both groups were mixed
and clustered together, six histologically distinct clusters with
different proportions in the favorable and poor groups were
identified (Supplementary Table 5). Of them, the clusters char-
acterized as “intratumoral lymphocytic infiltration” were

Fig. 3 | Kaplan–Meier survival analyses and distribution of the true platinum-
free interval groups of PathoRiCH+BRCA+HRD in the TCGA external valida-
tion cohort. a Kaplan–Meier survival plots of patients categorized by combined
PathoRiCH, BRCA, and HRD results. The combined PathoRiCH, BRCA, and HRD
significantly differentiated response groups in the platinum-free interval (PFI) and
overall survival (OS) (p = 1.07E-05 and p = 3.30E-16, respectively). The favora-
ble–BRCA/HRD-positive group displayed the most favorable PFI, and the
poor–BRCA/HRD-positive and poor–BRCA/HRD-negative groups showed the worst

PFI. Two-sided Kaplan–Meier survival analysis was used. b Distribution of the four
PFI groups (platinum resistant (PFI ≤ 6 months), partially platinum resistant
(6–12 months), platinum sensitive (12–24 months), and very platinum sensitive
(>24months)) by combined PathoRiCH, BRCA, and HRD. The colored bars indicate
the percentage of predictions for each outcome group (blue for favorable and red
for poor), with numerical values within each bars showing the case count for each
category. The combined PathoRiCH+BRCA +HRD showed significantly different
distributions for the four PFI groups (p =0.001).
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identified as favorable group–dominant (favorable patches
>80%), and the distinct histologic features in the poor group,
“hyperchromatic nuclei with poor cohesiveness and spindling
features” and “cytoplasmic vacuoles and microcystic change,”

were identified as poor group–dominant (poor patches
>80%) (Fig. 6c).

The 100 highest scoring patches from the PathoRiCH-predicted
favorable and poor groups are shown in Supplementary Fig. 6a.

a b

Fig. 4 | Multivariate Cox regression analyses in the TCGA and SMC external
validation cohorts. Themultivariate Cox regression analysis was conducted using
six variables: age, FIGO stage, BRCA mutation status, HRD status, combined BRCA
and HRD status, and PathoRiCH prediction. The data are presented with error bar
representing 95% confidence interval. a In the TCGA cohort, PathoRiCH stood out

as the most powerful independent prognostic factor (p = 6.57E-05), followed by
FIGO stage (p =0.005) and BRCA status (p =0.32). b In the SMC cohort, FIGO stage
(p =0.004) and PathoRiCH (p =0.39) stood out as significant independent prog-
nostic factors.

Fig. 5 | Attentionmap analysis of the PathoRiCH-predicted favorable and poor groups. The left side presents a two-sided Kaplan–Meier survival analysis according to
PathoRiCH predictions. For these predictions, separate attention maps of favorable and poor predictions were created and then combined to generate a combined
prediction attention map for each patient (scale bar = 2mm). The figure shows two representative cases of patients from the favorable and poor groups, with the
corresponding attention maps and high-score patches displayed side-by-side (scale bar = 50 µm).
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Clusters showing “intratumoral lymphocytic infiltration” were inclu-
ded in the favorable group, and clusters showing “hyperchromatic
nuclei with poor cohesiveness and spindling features”were frequently
identified in the poor group. On the other hand, in the all-tissue area
20×models, the 100 highest scoring patches consisted mostly of non-
tumor patches, such as adipose tissue and edge areas of tissue, which
might have disturbed the model decision (Supplementary Fig. 6b).

Transcriptome analysis
For the208 cases of theTCGAcohortwith availableRNAseq results, the
PathoRiCH-predicted favorable and poor groups could be further
divided into true-predicted (correct) and false-predicted (incorrect), as
shown in Supplementary Table 6. First, we compared RNA expression
patternsof the “true favorable-predicted” (n = 134) and “false favorable-
predicted” (n = 25) groups. In differentially expressed gene (DEG)
analysis (absolute log2 fold change >1 and p <0.01), 13 up-regulated

genes and 25 down-regulated genes for the “true favorable-predicted”
group were identified compared to “false favorable-predicted” group
(Supplementary Fig. 7a and SupplementaryData 1). Notably, a subset of
up-regulated genes, such as PRSS16, KLKB1, and ACOD1, were asso-
ciated with immune response and immunometabolism29,30. A gene
ontology (GO) analysis further identified enrichment of immune
response–related genes in the “true favorable-predicted” group, while
ribosomal- and mitochondrial-associated genes were prevalent in the
“false favorable-predicted” group (Fig. 7a).

Next, when comparing of the “true poor-predicted” (n = 19) and
“false poor-predicted” (n = 30) groups, 17 up-regulated genes and 26
down-regulated genes were identified for the “true poor-predicted”
group (Supplementary Fig. 7b and Supplementary Data 2). Of these,
stromal tissue related genes, such as MYO16, ANKRD2, LRRC14B, and
MYO7B, were up-regulated in the “true poor-predicted” group31,32. In
GO analysis, the “true poor-predicted” group also showed enriched in
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Fig. 6 | Cluster analysis of high-score patches from the PathoRiCH-predicted
favorable and poor groups. (Scale bar = 50 µm for all patch images) (a, b) Clusters
were initially created using Gaussian mixture models (GMMs), with high-score
patches serving as inputs for each group.The resulting clusterswere thenevaluated
by pathologists, who further combined clusters with similar histological features.

The final grouping comprised four favorable and four poor histologically distinct
clusters. c The combination of high-score patches from the favorable and poor
predicted groups was clustered based on their histological similarities using GMM.
Seven clusters were created, and two favorable group–dominant clusters and two
poor group–dominant clusters were identified.
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extracellularmatrix–associated genes, while the “falsepoor-predicted”
group was enriched with ribosomal- and mitochondrial-associated
genes (Fig. 7b).

Lastly, DEG and GO analyses for the “true favorable” (n = 165) and
“true poor” (n = 44) groups were conducted (Supplementary Figs. 7c,
8, andSupplementaryData 3). Interestingly, immune response–related
genes, including PRSS16, were enriched for the “true favorable” group,
and extracellular matrix–associated genes for the “true poor” group,
suggesting that PathoRiCH effectively captured the key features
associated with both groups.

BRCA mutation and HRD status prediction
To predict BRCA mutation status, MIL models were trained with the
SEV and SMC cohorts (n = 348, WSI n = 670) and validated with the
TCGA cohort (n = 284, WSI n = 516). The cancer-segmented area 20×
magnification model showed the highest AUC-ROC value of 0.526
(Supplementary Table 7). HRD status was predicted based on three
currently published HRD algorithms and using only the TCGA cohort
(n = 284, WSI n = 516)33–35. With the HRD status algorithm by Telli et al.,
the cancer-segmented area 5× model showed the best performance,
with an AUC-ROC of 0.524 (Supplementary Table 8). With the HRD
status algorithm by Takaya et al., the cancer-segmented area 20×
model showed the best performance, with an AUC-ROC of 0.556.
However, none of the models could be successfully trained to deter-
mine HRD status using the algorithmby Perez-Villatoro et al., probably
due to the small number of evaluated cases (83/284, 29.2%).

Discussion
In this study, we developed the PathoRiCH classifier to predict PFI using
histologic images alone. Among previous studies to develop prediction
models for HGSOC using histological features (Supplementary
Table 9)22–26, only Yu et al. and Laury et al. aimed topredict PFI. Although

they achieved good performance using a convolutional neural network
(CNN) architecture, they had limitations such as a heterogeneous study
population (including low-grade serous carcinoma for Yu et al.), small
study cohorts (training cohort n =30 for Laury et al.), and a lack of
external validation (both). In contrast, PathoRiCH uses a dual-stream
(DS)-MIL, which is better suited than a CNN for discovering predictive
morphologies from weakly labeled WSIs and is more effective than
conventional MILs in addressing misclassification and overfitting. In
addition, our model was trained with the well-curated cohort and vali-
dated with two external datasets (TCGA and SMC).

To identify the optimal model without overfitting to the internal
cohort, we compared the performances of six trained models in the
external (TCGA) cohort.Whereas the 5×modelswith both the all-tissue
and cancer-segmented areas demonstrated the highest performance
in the internal validation cohort, their performance decreased in the
external validation cohort, where the 20× model showed the best
results. This suggests that the cytologic features visible in 20× images
are more crucial for predicting therapeutic responsiveness in HGSOC
than the architectural features seen in 5× images. In addition, the
superior performance of the 5× model in the internal cohort can be
attributed to overfitting on low-resolution images. Notably, our study
reveals that the multiscale models exhibited intermediate perfor-
mance, falling between the 5× and 20×models. This consistent pattern
persisted in a comparison with ensemble models of both 5× and 20×
images. Althoughmultiscale learning is generally expected to enhance
performance by leveraging the strengths of the single-scale models, it
can result in performance degradation due to various factors such as
model interactions, data characteristics, or prediction targets36,37. In
the context of predicting therapeutic responsiveness in HGSOC, the
20× single-scale model proved to be the best one.

The PathoRiCH-based classification was not associated with BRCA
mutations or HRD status, as various other factors might affect the

Fig. 7 | Differential gene ontology (GO) profiles comparing True versus False
classifications within the PathoRiCH-predicted favorable and poor outcome
groups. aWithin the favorable outcome predictions, the true favorable-predicted
(n = 134) predominantly featured genes involved in immune response, and the false
favorable-predicted (n = 25) category was enriched for ribosomal- and

mitochondrial-associated genes. b Within the poor outcome predictions, the true
poor-predicted (n = 19) group was characterized by genes associated with the
extracellular matrix, and the false poor-predicted (n = 30) category was enriched
for mitochondrial- and ribosomal-associated genes. ClusterProfiler58 was used for
both GO analysis with a Benjamini–Hochberg procedure.
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response toward platinum treatment beyond homologous recombi-
nationmechanisms. Because PathoRiCH and the molecular traits were
not associated, they could be synergistic when combined. Thus, we
classified patients with HGSOC into four subgroups using the
PathoRiCH+BRCA+HRD combination, and that classification provided
higher predictive power than molecular biomarkers. Although
platinum-based regimens have been standard primary systemic
therapies for all patients with HGSOC, the favorable-BRCA/HRD-posi-
tive group was highly platinum-sensitive, suggesting that PARP inhi-
bitors early on and extended surveillance frequency could be
considered for this group. In contrast, the PathoRiCH-predicted poor
groupwould be highly platinum-resistant, so promptly enrolling these
patients in clinical trials for salvage treatments could be beneficial.
Furthermore, PathoRiCH showed predictive power superior to that of
current molecular biomarkers in both our survival and Cox regression
analyses. Compared with molecular biomarkers, PathoRiCH is also a
cost-effective solution because it requires only WSI images and does
not necessitate additional tissue tests. Thus, it can readily be inte-
grated into initial pathological diagnostic practice to provide risk
stratification for patients.

Our visualization analysis revealed that “intratumoral lymphocytic
infiltration” was a distinct histologic feature in the favorable group,
and “hyperchromatic nuclei with poor cohesiveness and spindling
features” and “cytoplasmic vacuoles and microcystic change” were
distinct features in the poor group. Marked tumor infiltrating lym-
phocytes (TILs) are a well-studied feature associated with a favorable
prognosis and response to platinum therapy in various cancer
types38–42. On the other hand, reduced cell-to-cell cohesion and
spindling morphologies are characteristic features of the epithelial-
mesenchymal transition (EMT), which is known to be a factor con-
tributing to resistance to platinum-based chemotherapy43,44. Interest-
ingly, the histologic features identified for each group also correlated
with our transcriptomic analysis: The correctly predicted favorable
group showedenrichment of immune response–relatedpathways, and
the correctly predicted poor group was enriched in extracellular
matrix–associated pathways, which are associated with the EMT. The
TIL and EMT traits have previously been reported to be associatedwith
the platinum treatment response, but no standardized criteria have
been established, and the subjectivity of their morphological assess-
ment has hindered their integration into pathologic diagnoses. In this
context, PathoRiCH innovatively adopted them for morphological
classification. In addition, PathoRiCH’s recognition of known prog-
nostic features throughout its end-to-end learning process enhances
the reliability of its decisions. On the other hand, “cytoplasmic
vacuoles and microcystic change” is a poor group–specific histologic
feature that has rarely been reported in malignancies45–47. Because its
clinical significance is unclear, the biological origins of this histological
trait need to be unraveled, whichwill require the advanced application
of spatial transcriptomics in upcoming studies.

This study has limitations. First, PathoRiCH showed an AUC-ROC
near 0.6 for the external validation cohorts, indicating that the model
barely differentiated the two groups. This demonstrates the challenge
of classifying HGSOC based solely on histological images, which arises
in part because HGSOC is already histologically classified as high-
grade. To ascertain the robustness of our model and introduce it into
clinical practice, additional multicenter validations and in-depth
interpretations of the models are essential. Second, regarding the
confusion matrix of the ground truth and predicted response groups
in the external (TCGA) cohort, a considerable proportion of the false
poor-predicted cases were identified, which likely resulted from the
internal training dataset with biased favorable ground truth group. To
address this imbalance, more cases with poor response should be
incorporated in the training dataset to balance the two groups and
better train features associated with poor treatment response. Third,
the TCGA cohort did not contain information on PARP inhibitor

administration. However, the clinical data for the TCGA cohort were
collected only until 2010, and PARP inhibitors were not FDA-approved
and introduced to ovarian cancer treatment until 201448. Thus, the
TCGA cohort is expected to be PARP inhibitor–naïve. Fourth, the
transcriptomic analysis used bulk RNA sequencing data, which limited
that analysis. To correlate the histological and molecular features of
the PathoRiCH-predicted groups, we are conducting spatial tran-
scriptomics for a future study. Lastly, our model showed suboptimal
performance in predicting BRCA mutation and HRD status. As our
training cohort contained only a small number of patients had BRCA
mutation and HRD status data, large BRCA- and HRD-focused cohorts
could be beneficial for improving our model.

In conclusion, we developed a histopathological image–based
deep learning model with which to predict PFI in HGSOC. This model
showed statistically significant performance in stratifying patients by
PFI in three independent cohorts with different sample preparations
and staining conditions. In addition, combining PathoRiCH with cur-
rent molecular biomarkers provides an even more powerful tool for
stratifying the risks of patients. The morphological and genetic fea-
tures of the PathoRiCH-predicted groups support the high reliability of
the model decisions. PathoRiCH does not require additional tissue
tests or annotations from pathologists, allowing it to be straightfor-
wardly implemented in clinical diagnostic practice. Our concept has
the potential to transform the current diagnostic pipeline for HGSOC
and guide gynecologic oncologists in selecting primary and main-
tenance treatments, planning surveillance frequency, and counseling
patients about clinical trials.

Methods
Cohorts
This study was approved by the institutional review board of Sever-
ance Hospital (IRB no. 4-2021-1391). Informed consent was waived for
this retrospective study and participants were not compensated. All
patients were confirmed as female. For the SEV cohort, data for 394
patients with HGSOC (WSI, n = 754) between November 2005 and June
2022 were retrieved from Yonsei Severance Hospital (Seoul, Korea).
The patients were stage III–IV at presentation, underwent primary
debulking surgery followed by at least six cycles of adjuvant platinum-
based chemotherapy, and did not receive PARP inhibitors in the first
two years after diagnosis.

Of the 585 ovarian serous cystadenocarcinoma patients in the
TCGA-OV dataset, those with TP53 mutations, clinical outcome data
including PFI, andH&EWSIwere selected for the TCGA cohort (https://
portal.gdc.cancer.gov/). After excluding cases with unevaluable slide
images, 284 patients (WSI n = 516) with stage I–III HGSOC who
underwent primary debulking surgery and platinum-based adjuvant
chemotherapy were included in the analyses49.

For the SMC cohort, data for 136 HGSOC patients (WSI, n = 136)
treatedbetween January 2018 andNovember 2021were retrieved from
Samsung Medical Center (Seoul, Korea). The patients were stage I–IV
at presentation, underwent primary debulking surgery followed by at
least six cycles of adjuvant platinum-based chemotherapy, and did not
receive PARP inhibitors in the first two years after diagnosis. Clin-
icopathological data for the SEV and SMC cohorts were obtained from
medical records and pathology reports.

PFI, BRCA mutation, and HRD status prediction
For PFI prediction, patients were classified into binary response
groups, with “platinum-resistant” (PFI ≤ 6 months) and “partially pla-
tinum-sensitive” (PFI 6–12 months) patients as the poor response
group, and “platinum-sensitive” (PFI 12–24 months) and “very plati-
num-sensitive” (PFI > 24 months) patients as the favorable response
group27,28. For training and internal validation, 5-fold cross-validation
was performed in the SEV cohort (n = 394), and external validation was
performed in the independent TCGA (n = 284) and SMC (n = 136)
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cohorts. For BRCA mutation prediction, we trained the MIL models
with a mixture of patients from the SEV and SMC cohorts who had
available BRCAmutation status data (n = 348) and validated them with
the TCGA cohort (n = 284). The SEV and SMC datasets do not contain
HRD results; only the TCGA cohort (n = 284) was used for training and
validating HRD status, with an 8:2 split for training and validation. The
HRD status prediction was performed with three different HRD
algorithms33–35.

Slide preparation and preprocessing
For the SEV and SMC cohorts, all H&E-stained slides were prepared
from surgically resected specimens using formalin-fixed paraffin-
embedded (FFPE) tissue blocks. WT-1 and p53 immunohistochemical
staining was performed for the initial pathological diagnoses in all
cases. All WSIs were retrospectively reviewed by gynecologic pathol-
ogists (E. Park, N.H. Cho, and H.-S. Kim), and the most representative
slides with high tumor cellularity were selected, with amedian number
of 1.7 (range 1–5) slides per patient for the SEV cohort and 1 slide per
patient for the SMC cohort. All slides were scanned using an Aperio
AT2 scanner (Leica Biosystems, Wetzlar, Germany) at 20× magnifica-
tion (0.50 µm/pixel). For the TCGA cohort, all H&E slide images were
from FFPE or fresh-frozen surgical resection specimens before sys-
temic treatment. We removed slides with no identifiable tumor tissue,
low-resolution images, or artifacts such as large pen marks, tissue
folds, or blurring.

WSIs are generally too large to be used as inputs for deep learning
models, so the images must be divided into tiles. Tiles with less than
30% tissue area were filtered out to extract only tissue-containing tiles
from the WSIs. Two types of tiles were created: tiles divided into
224 × 224 pixels to generate 20× tiles, and tiles divided into 896 × 896
pixels and resized to 224 × 224 pixels to generate 5× tiles. For the
multiscale MIL model, the 5× and 20× tiles were constructed
hierarchically.

Model development
Three processes were applied sequentially to develop the MIL pre-
dictionmodels (Fig. 1): automated cancer segmentation for the cancer-
segmented area models, contrastive self-supervised learning, and MIL
modeling. All models were trained on a single NVIDIA RTX A6000
48GB GPU.

First, to automatically extract the cancer-segmented regions from
the HGSOC WSIs, we developed a UNetPlusPlus-based cancer-seg-
mentation model using ResNet34 as an encoder. In UNetPlusPlus, the
encoders and decoders are connected through a nested dense skip
path, making it a powerful architecture for medical image segmenta-
tion. The model was trained with 5× magnification patch images
(448× 448μm with 224× 224 pixels) generated from 810 breast inva-
sive ductal carcinoma biopsy slides (tile n = 8130) from multiple insti-
tutions. In all the trained patch images, cell-level annotations for
carcinomas were performed by experienced pathologists. After
excluding patch images with a cancer area of <10%, 8130 patch images
were created. The model was trained for 100 epochs using the SGD
optimizer with weight decay and the Dice loss function. In the HGSOC
WSIs, the model automatically distinguished cancerous areas from
non-cancerous areas (Supplementary Fig. 1). To quantitively assess the
performance of cancer segmentation in theHGSOCWSIs, we randomly
selected 10% of cases from the SEV and TCGA cohorts (n = 39 and
n = 28, respectively), and 250× 250 µm regions were manually anno-
tated by experienced pathologists.

Second,weused SimCLR self-supervisedResNet18CNNmodels to
visualize the 5× and 20× histological images50–52. The SimCLR algo-
rithm allows the CNN to learn the representations of images by max-
imizing agreement among different augmented views of the same data
example. The models were trained using the CAMELYON 16 and
CAMELYON 17 datasets53.

Third, we applied a DS-MIL for the prediction task52. DS-MIL pro-
vides improved classification and localization accuracy for multiscale
WSI features by using a pyramidal fusion mechanism. For the MIL, a
contrastive self-supervised CNN model was used as an extractor of
histological features to produce powerful representations. The MIL
model was trained for 200 epochs using the AdamW optimizer with
weight decay, a cosine annealing learning rate, and a cross-entropy loss
function. In contrast to similar previous studies that predicted and
analyzed only one class as a binary classification, our MIL model pre-
dicted the probability of favorable and poor groups, respectively, to
more precisely and clearly analyze the histological differences
between the favorable and poor groups using attention. To define the
final group based on the favorable and poor group prediction prob-
abilities of the MIL model, we set an optimal threshold using the
Youden’s Index, which could find the point that maximizes the dif-
ference between the true positive rate and the false positive rate. The
threshold for the favorable group was set to 0.623, and for the poor
group, it was set to 0.377 (Supplementary Fig. 9). Consequently, any
instance with a favorable prediction probability exceeding 0.623 was
classified as belonging to the favorable group. Similarly, if the poor
prediction probability surpassed 0.377, the instance was categorized
as belonging to the poor group. If both the predicted probability for
the favorable group and the predicted probability for the poor group
were below or above those thresholds, the patient was placed in the
prediction probability group with the maximum value. Each AUC-ROC
was calculated using average values.

The accessible links for the utilized open-source versions are as
follows. The program was developed using Python programming lan-
guage (version 3.8). The models are implemented using PyTorch v1.10
(https://github.com/pytorch/pytorch) and Scikit-learn v1.0.2 (https://
github.com/scikit-learn/scikit-learn/blob/main/sklearn/model_
selection/split.py). The multi-instance learning process is based on
DSMIL. The contrastive learning for feature extraction process is based
on SimCLR (available at https://github.com/sthalles/SimCLR), with a
ResNet18 backbone architecture (https://github.com/pytorch/vision/
blob/master/torchvision/models/resnet.py). The cancer segmentation
model is based on an implementation of UNetPlusPlus using
segmentation-models-pytorch v0.3.3 (https://github.com/qubvel/
segmentation_models.pytorch), with a ResNet34 backbone archi-
tecture (https://github.com/pytorch/vision/blob/master/torchvision/
models/resnet.py). Mathematical operations are implemented using
Numpy v1.23.4 (https://github.com/numpy/numpy). The WSIs were
processed using Openslide-Python v1.3.0 (https://github.com/
openslide/openslide-python). The patch image handler is based on
OpenCV-Python v4.7.0.68 (https://github.com/opencv/opencv-
python). Finally, dimension reduction and clustering process is
implemented using Scikit-Learn (https://github.com/scikit-learn/
scikit-learn/tree/main/sklearn/decomposition and https://github.
com/scikit-learn/scikit-learn/tree/main/sklearn/mixture).

Patient level classification
In the slide-level evaluation, patients with multiple slides could be
predicted as belonging to different groups according to the evaluated
slides. In such cases, the procedure entailed computing the average
favorable prediction probability and average poor prediction prob-
ability for each patient. The subsequent steps followed the same
methodology for final group definition used for the slide-level
prediction.

Ensemble analysis
We proceeded with an ensemble technique, aggregating results of the
5× and the 20× MIL models through either soft or hard voting, based
on a previous study54. Soft voting determines the final prediction class
by averaging prediction probabilities across models and applying a
threshold, whereas hard voting relies on the proportion of positive
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predictions among classes. Our hard voting method includes both the
AND andOR conditions. Under the AND condition, the final prediction
is labeled as the poor group only if both models predict the poor
group. Conversely, with the OR condition, the final prediction is
assigned to the poor group if either model predicts it. The threshold
for the soft voting ensemble model was set using the Youden’s Index,
with 0.533 for favorable group and 0.467 for poor group.

High-score patch extraction and clustering analysis
Each patch image was represented as an one-dimensional feature
vector using the global average pooling output of the final convolu-
tional layer of the contrastive self-supervised CNN. We obtained the
maximum and minimum values from all patch attention scores, and
the normalized attention scores were obtained by applying min-max
normalization.

After dimensionally reducing the one-dimensional feature vectors
using the t-SNE algorithm, the GMMalgorithmwas used for clustering.
The initial numbers of GMM clusters were set according to the heur-
istic and default parameters of the GMM and t-SNE, respectively.

TCGA transcriptome analysis
All analyses on TCGA data were performed using R (v 4.2.1). The 421
RNAseq STAR counts data from primary tumor specimens from the
TCGA-OV project were downloaded and processed using TCGAbio-
links (version 2.31.1)55. Of the 284 TCGA patients used with PathoRiCH,
208 patients with available RNAseq results were analyzed. Insuffi-
ciently expressed genes were filtered by the default filterByExpr
function, and expression counts were normalized to TrimmedMeanof
M-values (TMM) by the calcNormFactors function in edgeR (version
3.38.4)56. TMMdata were transformed to log2-counts permillion using
the voom function in limma (version 3.52.4)57. Model fitting and
extracting DEGs were performed by the lmFit, eBayes, and topTable
functions in limma. A volcano plot of the differential expression fold
change data was created with cut-off of absolute log2 fold change >1
and p <0.01, using the EnhancedVolcano package (version 1.14.0). A
gene set enrichment analysis comparing the two response groups was
performed using the gseGO function of clusterProfiler (version
4.4.4)58, with a Benjamini–Hochberg procedure for multiple testing
correction.

BRCA genetic tests
In SEV and SMC cohorts, BRCA mutation status was assessed in per-
ipheral blood and tumor samples. Germline BRCA was tested using
Sanger sequencing or next-generation sequencing (NGS). Sanger
sequencing was performed on a 3730 DNA Analyzer with a BigDye
Terminator v3.1Cycle SequencingKit (AppliedBiosystems, FosterCity,
CA, USA), followed by analysis using Sequencher 5.3 software. NGS
using a custom panel, including BRCA1 and BRCA2 genes, was per-
formed in a proportion of patients on a NextSeq 550 instrument
(Illumina) with 2 × 151 bp reads. Bioinformatic analysis was performed
using the Burrows-Wheeler Aligner, GenomeAnalysis Toolkit, Ensembl
Variant Effect Predictor, and a custom pipeline. Experienced geneti-
cists made final interpretations. For tumor BRCA, genomic DNA was
extracted forNGSof tumor samples using aMaxwell CSCDNAFFPE Kit
(Promega, Madison, WI, USA) according to the manufacturer’s
instructions. The products were sequenced using the Nestxeq550
System (Illumina) using the TruSight Oncology 500 panel (Illumina).
For mutational analysis, FASTQ files were uploaded to the Illumina
BaseSpace software (Illumina) for variant interpretation. Only variants
in the coding regions, promoter regions, or splice variants with a
minimum 3% of the reads and read depth of 250.

Statistics and reproducibility
No statistical method was used to predetermine sample size and all
available samples were included in the model development and

validations. No data were excluded from the analyses and the analyses
were not randomized. The researcherswereblinded to the labels of the
samples in the test set before the final model evaluation.

A χ2 test was used to evaluate correlations between categorical
variables. Kaplan–Meier survival curves were estimated in the survival
analysis. Two-sided unpaired t-tests, Mann–Whitney U tests, and Wil-
coxon rank-sum tests were used to compare differences. A p <0.05
was considered statistically significant for all analyses, and all analyses
were two-tailed. All datawere analyzedusingR software (version4.2.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a Source Data file. The remaining data are
available within the Article or Supplementary Data. The TCGA dataset
is publicly available via the TCGA portal (https://portal.gdc.cancer.
gov). The CAMELYON 16 and CAMELYON17 dataset is publicly avail-
able viaCamelyongrand challengewebsite (https://camelyon16.grand-
challenge.org, and https://camelyon17.grand-challenge.org respec-
tively). SEV and SMC cohorts’ NGS dataset for germline BRCA tests is
deposited under accession number PRJNA1108881. WSI data for the
SEV and SMC cohorts are not publicly available due to hospital reg-
ulations. The data could be available on request from the corre-
sponding author (E.P.) and response will be received typically within 4
weeks. Data usage is restricted to non-commercial academic research
purposes. Source data are provided with this paper.

Code availability
The source code is publicly available and can be downloaded from
https://github.com/dmmoon/PathoRICH. Additional requests or
inquiries about the code can be made to dmmoon@jlkgroup.com.
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