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ABSTRACT
◥

Background: Distinguishing ovarian cancer from other gyneco-
logical malignancies is crucial for patient survival yet hindered by
non-specific symptoms and limited understanding of ovarian can-
cer pathogenesis. Accumulating evidence suggests a link between
ovarian cancer and deregulated lipidmetabolism.Most studies have
small sample sizes, especially for early-stage cases, and lack racia-
l/ethnic diversity, necessitating more inclusive research for
improved ovarian cancer diagnosis and prevention.

Methods: Here, we profiled the serum lipidome of 208 ovarian
cancer, including 93 early-stage patients with ovarian cancer and
117 nonovarian cancer (other gynecological malignancies) patients
of Korean descent. Serum samples were analyzed with a high-
coverage liquid chromatography high-resolution mass spectrome-
try platform, and lipidome alterations were investigated via statis-
tical and machine learning (ML) approaches.

Results:We found that lipidome alterations unique to ovarian
cancer were present in Korean women as early as when the cancer
is localized, and those changes increase in magnitude as the
diseases progresses. Analysis of relative lipid abundances
revealed specific patterns for various lipid classes, with most
classes showing decreased abundance in ovarian cancer in com-
parison with other gynecological diseases. ML methods selected a
panel of 17 lipids that discriminated ovarian cancer from non-
ovarian cancer cases with an AUC value of 0.85 for an indepen-
dent test set.

Conclusions: This study provides a systemic analysis of lipi-
dome alterations in human ovarian cancer, specifically in Korean
women.

Impact: Here, we show the potential of circulating lipids in
distinguishing ovarian cancer from nonovarian cancer conditions.

Introduction
The high mortality rate of ovarian cancer is largely due to the

asymptomatic progression of the disease, accompanied by our lack of
understanding of ovarian cancer biology. Ovarian cancer is not a single
disease; it consists of several histological subtypes (1) and its hetero-
genous nature is one major obstacle in understanding disease biology
and identifying new biomarkers (2). Presently, there are no screening
tests available for detecting ovarian cancer in the general population (3).

In many cases, women with ovarian cancer experience non-specific
symptoms such as pelvic pain and bloating, and thus are frequently
dismissed and misdiagnosed as benign conditions (4). Symptomatic
patients with a risk of developing ovarian cancer are screened via trans-
vaginal sonography (TVS) or the measurement of serum protein
biomarker CA125 (5). However, these diagnostic strategies lack ade-
quate sensitivity and specificity. For instance, increased levels of CA125
are observed for several nonovarian cancer–related gynecologicalmalig-
nancies whereas it is only elevated in 50% of early ovarian cancer
cases (5). Likewise, TVS can misdiagnose ovarian cancer as benign
diseases, leading to mismanagement that significantly reduces patient
survival rate (6). Patients with ovarian cancer misdiagnosed for benign
diseases suffer worse prognosis compared with women who are treated
by gynecologic oncologists (7), and currently 30% to 50% of women
with ovarian cancer in the United States do not receive appropriate
ovarian cancer treatment (4). Thus, although effective screening in the
general population remains the goal, accurate diagnosis and triage of
women suspected of ovarian cancer is crucial for improved prognosis.

Substantial effort has been put into improving the clinical diagnosis
of ovarian cancer and understanding the underlying disease mechan-
isms. For example, the two-stage approach that uses both CA125 and
TVS sequentially showed improved specificity in clinical trials, and the
use of protein biomarker HE4 in combination with CA125 has shown
better specificity for distinguishing malignant from benign pelvic
masses (8). Other potential biomarkers for improved diagnosis include
autoantibodies and antigen–autoantibody complexes, sometimes
combined with CA125 (9, 10), serum microRNAs (11) or circulating
tumor DNA (12). Recently, protein markers detected in Pap test
fluid (13) have shown promising results to distinguish ovarian cancer
from women with normal cytology. One characteristic feature of
malignant tumors is their ability to rewire metabolism in response
to high cell proliferation rates (14). Metabolomics, the examination of
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metabolites, including lipids, carbohydrates, and amino acids, pro-
vides a powerful platform for investigating metabolic alterations and
accelerating biomarker discovery.

In recent years, alterations in ovarian cancer lipid metabolism have
gained increased attention (15, 16). Lipids function as building blocks
for cell membranes, participate in cellular signaling, and are regulators
of numerous cellular functions that drive energy-related processes (17).
Given the close connection between altered lipid metabolism and
oncogenesis, there is accumulating evidence showing specific lipid
profiles associated with ovarian cancer growth and metasta-
sis (15, 18, 19). Serum lipidome profiling of patients with ovarian
cancer against normal controls and benign malignancies has shown
evidence of dysregulation in glycerophospholipids, ceramides, and
triglycerides (TG) being associated with malignant ovarian
tumors (15, 16, 20). Some studies have suggested that the use of lipid
panels in combination with CA125 can achieve enhanced diagnostic
power (16, 21). The diagnostic potential of gangliosides, a class of
glycolipids involved in immunosuppressive response in tumors, has
recently been reported for distinguishing patients with ovarian cancer
from nonovarian cancer–related diseases as well as healthy con-
trols (22). Increased ganglioside levels in plasma, tissue, and ascites
fluid frompatientswithovarian cancerhave alsobeen reported (22, 23).
These studies, however, are often hindered by small sample sizes,
limited number of early-stage samples, lack of external validation
datasets, and inconsistencies in sample collection and processing
protocols, thereby limiting the statistical significance and robustness
of the final results. Most studies focus on cohorts of non-Hispanic
white women or women with European ancestry, and a few examples
involving cohorts of Chinese women (24, 25). However, studies with
patients of Korean descent are largely lacking. Although an integrated
serum proteomics and metabolomics study of Korean patients has
been previously reported, it only involved 10 patients with ovarian
cancer (26).

Here, we present a comprehensive serum lipidomic study of patients
with ovarian cancer of Korean descent with various histological types
and disease stages (n ¼ 208) and of women with other gynecological
malignancies, including invasive cervical cancer (n ¼ 117). Samples
were secured from two independent tissue banks. Ultra-high perfor-
mance liquid chromatography-high resolution mass spectrometry
(UHPLC-MS) combined with machine learning (ML) were used to
identify circulating lipidome alterations unique to patients with ovar-
ian cancer. Data were analyzed on a lipid class basis, providing a
systems level perspective of ovarian cancer–related lipidome pertur-
bations. Furthermore, a panel of optimal lipid markers was identified
with an ML pipeline to distinguish patients with ovarian cancer from
nonovarian cancer. This panel included ether phospholipids, sphin-
golipids, and gangliosides.

Materials and Methods
Patient cohort

Serum samples were obtained from two independent tissue banks in
South Korea: Dongsan Hospital Human Tissue Bank and the Human
Tissue Bank of Gangnam Severance Hospital, Yonsei University
College of Medicine (No. HTB-P2019–13). Samples from both tissue
banks were obtained after the approval from their respective IRB and
the patient’s written informed consent. The study was conducted
according to the guidelines of the Declaration of Helsinki. The
Severance cohort included 185 samples from patients with ovarian
cancer, 47 from women with benign ovarian tumors, 50 from invasive
cervical cancers, and 21 samples from patients with benign uterine

tumors. Blood was collected from all patients during surgery after
anesthesia and at least 8 hours of fasting. In the Dongsan cohort, 88
women had ovarian cancer, 12 had benign ovarian tumors, 10 had
benign uterine tumors, and 9 women had cervical cancer. As with the
Severance cohort, samples from these patients were collected during
surgery after anesthesia and at least 6 hours of fasting. All recruited
participants were of Korean descent. Samples from both cohorts were
grouped together and patients with ovarian cancer and all other
gynecological malignancies (nonovarian cancer) were age-matched.
The matched cohort included 208 patients with ovarian cancer (mean
age, 51.9 years) and 117 nonovarian cancer (mean age, 49.9 years).
Disease stages and histological characteristics of each patient are given
in Supplementary Table S1. Among the patients with ovarian cancer,
93 patients had early-stage (I and II) cancers. Ten of the patients with
ovarian cancer had recurrent cancer and 9 have had their samples
collectedmore than once, although at different stages of ovarian cancer
development. Samples from normal controls (i.e., women with no
known gynecological malignancies) were also collected during regular
health exams at Severance hospital. In this case, blood was collected
after fasting for at least 8 hours. As noted earlier, blood from patients
with ovarian cancer or patients with other conditions was collected
after the initiation of anesthesia, and thus could not be directly
compared with normal controls without major confounding effects.
Therefore, control samples were excluded from the main data analysis
pipeline. However, we also conducted a lipidome comparison study
between healthy controls and patients with ovarian cancer for refer-
ence purposes. Results from this study are presented in the Supple-
mentary Information section and the data are shared together with the
rest of the cohort.

Chemicals
LC/MS grade 2-propanol, water, formic acid (99.5þ%), ammonium

formate, and ammonium acetate were purchased from Fisher Chem-
ical (Fisher Scientific International, Inc.) and used for the preparation
of chromatographic mobile phases and sample extraction. Isotopically
labeled lipid standards (Supplementary Table S2)were purchased from
Avanti Polar Lipids.

Sample preparation
Serum samples were thawed on ice, followed by extraction of the

non-polar (lipid) metabolome. The extraction solvent was prepared by
addition of 725 mL of the isotopically labeled lipid standard mixture
(Supplementary Table S2) to 43.5-mL 2-propanol (1:60 ratio) and kept
on ice. This cold extraction mixture was added to serum samples in a
solvent: Serum 3:1 ratio for protein precipitation, followed by vortex
mixing for 15 seconds. Samples were centrifuged at 13,000 rpm for 7
minutes and the resulting supernatant was transferred to LC vials. The
supernatant was stored at �80�C until UHPLC-MS analysis, which
was performed within one week. A blank sample, prepared with
LC/MS grade water, underwent the same sample preparation process
as the serum samples. Pooled quality control (QC) samples were
prepared by combining 5 to 10 mL aliquots of each serum sample
extract. This pooled QC sample was analyzed every 10 LC/MS runs to
monitor and correct instrument stability through the course of the
experiment. Samples were randomized both for sample preparation
and LC/MS analysis.

Ultra-high performance LC/MS serum lipidomics
Reverse phase (RP) chromatography was performed in a Vanquish

LC system equipped with a ThermoAccucore C30, 150� 2.1mm, 2.6-
mmparticle size column. AnOrbitrap ID-X Tribridmass spectrometer
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(Thermo Fisher Scientific) was used for MS analysis. For negative ion
mode, mobile phase A was 10 mmol/L ammonium acetate with
water/acetonitrile (40:60 v/v) and mobile phase B was 10 mmol/L
ammonium acetate with 2-isopropanol/acetonitrile (90:10 v/v). For
positive ion mode, mobile phase A was 10 mmol/L ammonium
formate with water/acetonitrile (40:60 v/v) and 0.1% formic acid.
Mobile phase B was 10 mmol/L ammonium formate with 2-isopro-
panol/acetonitrile (90:10 v/v) and 0.1% formic acid. All samples were
kept in the autosampler at 4�C during LC/MS runs and an injection
volume of 2 mL was used in all cases. MS data were acquired in the 150
to 2,000 m/z range with a 120,000 mass resolution setting. The most
important MS parameters and the chromatographic gradient used are
given in Supplementary Tables S3 and S4, respectively. For MS/MS
experiments, the Deep AcquireX data acquisition workflow was
applied. Stepped normalized collision energy values of 15, 30, 45 were
used for fragmenting precursor ions in the HCD cell followed by
Orbitrap analysis at 30,000 mass resolving power. Precursor ions were
also fragmented with a collision-induced dissociation (CID) energy of
40 and analyzed in the ion trap.

Data processing
Spectral feature (retention time, m/z) pairs were extracted from

raw data using Compound Discoverer v3.3 (Thermo Fisher Scientific).
This step included chromatographic peak alignment, peak peaking,
peak area integration, and adjustment for instrument drift using the
pooled QC injections and the systemic error removal using random
forest algorithm (27). Chromatographic peaks with less than five times
the peak area of the matching sample blank peaks were marked as
background noise and removed from the dataset. Further filtering
was performed by removing features not present in at least 50% of the
QC sample injections or that had a relative standard deviation (RSD)
greater than 30% in QC samples. Following feature extraction, all
retained features were matched against a curated in-house lipid spec-
tral database. Exact masses, elemental formulas, and MS-MS spectra
were used for matching purposes, and results manually curated. All
annotated features were subject to ML feature selection.

QC
Data quality was assessed using the set of pooled QC runs. The

average intensities of all QC runs were examined with RawMeat (Vast
Scientific) software and their RSD for positive and negative ion modes
calculated. An average RSD below 15% was obtained for positive ion
mode data. A slight drift in the negative ionmode datasetwas observed,
with a%RSDof 35%. For this dataset, features that could not be aligned
after data processing in Compounds Discoverer were removed. Prin-
cipal component analysis (PCA) showed excellent clustering of QC
samples (Supplementary Fig. S1), confirming good reproducibility. In
addition, the quality of all sample and QC runs was evaluated across
each batch using the internal standard (IS) peak areas (Supplementary
Table S5) and found to be excellent.

Selection of discriminant lipids
Exploratory analysis of the overall lipidome alterations in ovarian

cancer was conducted using the following pipeline: First, one of a pair
of two highly correlated features was removed using a Pearson’s
correlation coefficient cutoff value of 0.85. Fold changes for all
remaining features were then calculated as the base 2 logarithm of
the average lipid abundance ratios between patients with ovarian and
nonovarian cancers. Following this step, the statistical significance of
each detected lipid was calculated using the Welch’s t test with a
Benjamini–Hochberg correction. Lipids with a q value of <0.05 were

considered statistically significant. Altered lipid features were then
autoscaled followed by feature selection using the SelectFromModel
function with a random forest classifier in the Python sci-kit-learn
library (v1.1.2). Features were ranked by their Gini index; lipids with a
Gini index equal to or greater than the Gini index mean were selected.
The sci-kit-learn default parameters were used and the number of trees
for the random forest classifier was set to 100. To study differences
between early-stage ovarian cancer, nonovarian cancer, and late-stage
ovarian cancer, the dataset was stratified by ovarian cancer stages. The
early-stage class consisted of stages I and II and the late-stage ovarian
cancer class was built using stages III and IV. Lipids statistically
different between ovarian and nonovarian cancer groups (P value
<0.05) were retained, followed by the random forests feature selection
process described above.

ML pipeline for biomarker panel selection
A small panel of lipids differentiating ovarian cancer from non-

ovarian cancer samples was selected using the following ML pipeline:
(i)One of twohighly correlated featureswas removed using a Pearson’s
correlation coefficient cutoff value of 0.85. (ii) The dataset was split
into training (70%, ovarian cancer n¼ 144 and nonovarian cancer n¼
83) and test set (30%, ovarian cancern¼ 64 andnonovarian cancern¼
34). (iii) Next, the Welch’s t test (P < 0.05) was applied to ovarian and
nonovarian cancer samples in the training set. (iv) Because the dataset
contained fewer number of nonovarian cancer samples than ovarian
cancer samples, the training and test sets were imbalanced and
consisted of almost twice as many ovarian cancer samples than
nonovarian cancer. Imbalanced datasets often lead to poor classifica-
tion performance as the classification classes are not equally repre-
sented (28). To achieve improved classification power, the training set
was balanced via the Synthetic Minority Over-sampling Technique
(SMOTE; ref. 28), which can be used to create synthetic minority
class samples for imbalanced datasets. Python’s imbalanced-learn
library (v. 0.9.1) was used to implement SMOTE. (v) Feature selection
was carried out on the balanced training set. In this case, random
forests were used, and features were ranked by their Gini index feature
importance score. The top 10 lipids provided the best discriminating
power for the training set and were selected for classification purposes.
The sci-kit-learn default parameters were used whereas the number of
trees was set to 100. The classification power of ganglioside lipids was
also evaluated. The best discriminating gangliosides were selected
following the same feature selection process as described above. The
top seven ganglioside features provided the best discriminating power
for the training set and were selected for further analysis. Jupyter
notebooks was used as the integrated development environment for all
statistical and ML analysis. All code is available via GitHub:
https://github.com/facundof2016/Sah_Ovarian-cancer_2023.

ML classification
Classification tasks were performed by training ML models to

differentiate ovarian cancer from nonovarian cancer samples. A
balanced training dataset (n¼ 144 ovarian cancer, n¼ 144 nonovarian
cancer) was used to train the models, with a 10-fold cross validation
conditions. Random forests, logistic regression, k-nearest neighbor (k-
NN), linear kernel support vector machine (SVM-Lin), and a voting
ensemble classifier were used. The estimators for the voting classifier
included all four ML methods: Random forests, logistic regression,
k-NN, and SVM-Lin. The default parameters of Python’s sci-kit-learn
library (v1.1.2) were used. All classifiers were evaluated on the basis of
sensitivity, specificity, accuracy, and their area under the receiver
operating characteristic curve (AUC-ROC).

Ovarian Cancer Lipidomics
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AutoML technique for classification tasks
For AutoML using auto-sklearn (version 0.15.0), the Auto-

SklearnClassifier was allocated 3,600 seconds to identify the optimal
ML pipelines. We used a cross-validation resampling strategy with
standard parameters, adopting the hold-out method. This method
further segmented the training data into an internal training and
validation set with a 67:33 ratio. The ensemble approach was
implemented, with consideration given to up to 50 models for
inclusion in the ensemble. ROC-AUC was used as the evaluation
metrics. During optimization, each model was restricted to a
maximum runtime of 1,440 seconds. After establishing the AutoML
pipelines using autosklearn, the final ensemble was trained on the
complete training dataset through 5-fold cross-validation. Subse-
quently, its performance was assessed on unseen datasets.

Data availability
Data generated in this study are available through the NIH Meta-

bolomics Workbench (http://www.metabolomicsworkbench.org/)
with project ID PR001623 (Study ID ST002521) http://dx.doi.
org/10.21228/M8X42D. Code is provided at https://github.com/facun
dof2016/Sah_Ovarian-cancer_2023

Results
Patient cohort

A high-coverage serum lipidomic LC/MS profiling workflow was
applied to the combined patient cohorts. Each cohort was composed of

patients with ovarian cancer, benign ovarian tumors, benign uterine
tumors, or cervical cancer. Patients with benign conditions and
cervical cancers were grouped together as nonovarian cancer samples,
whereas patients with ovarian cancer of various stages and histological
types were all combined into the ovarian cancer group. To remove
potential confounders from the dataset, ovarian and nonovarian
cancer groups were age matched. The statistical significance between
the ages of patients with ovarian and nonovarian cancers was assessed
with the Welch’s t test. The age-matched cohort consisted of 208
patients with ovarian cancer and 117 patients with nonovarian cancer
(Supplementary Table S1; Fig. 1).Among patients with ovarian cancer,
93 women had early-stage (I and II) cancers, of which 30% (28/93)
were of serous histology, the most aggressive subtype (1). In contrast,
serous tumors accounted for 86% of advanced-stage (III and IV) cases
whereas the remaining 14%of the cases included clear cell, transitional,
mucinous, and carcinosarcoma subtypes.

Serum lipidome differences between patients with ovarian and
nonovarian cancers

Lipidomics data were acquired for all ovarian and nonovarian
cancer samples using RP UHPLC-MS. A total of 24,297 and 5,485
de-isotoped and de-adducted spectral features (retention time, m/z
pairs) were extracted from positive and negative ion mode datasets,
respectively. From these, a total of 994 lipid species assigned to 22 lipid
subclasses were successfully annotated using our in-house MS/MS
spectral library. Detected lipid classes included fatty acids, glyceropho-
spholipids, glycerolipids, sphingolipids, and sterol lipids. TG and

Figure 1.

Study design overview, UHPLC-MS workflow, and machine learning pipeline. A, Serum samples from patients with ovarian cancer (n¼ 208) and nonovarian cancer
(n¼ 117) obtained from Gangnam Severance and Dongsan Hospitals were studied. B, Serum sample preparationworkflow before UHPLC-MS analysis. C,UHPLC-MS
data collection in both positive and negative ion modes. Data were processed with Compound Discoverer v.3.3 (Thermo Fisher Scientific) and features annotated
using in-houseMS-MS libraries.D,Machine learningworkflow for selecting themost relevant lipids to differentiate ovarian and nonovarian cancer conditions. For the
lipid class analysis of ovarian cancer versus other gynecological malignancies, selection of the best differential lipids was performed using random forests feature
selection. Lipids with a Gini index greater than the mean of all Gini index values were selected. For the biomarker panel selection, selection of a 10-lipid panel for
differentiating ovarian and nonovarian cancer serum samples was performed using random forests algorithm. Lipids with a Gini index of >0.01 were selected as the
best differential features in the training set. Five different machine learning models—random forests, logistic regression, k-Nearest Neighbor (KNN), support vector
machines (SVM) and voting classifier, which is an ensemble of the four listed classifiers—were used for classification. SMOTE, Synthetic Minority Oversampling
Technique. (Created with BioRender.com.)
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phosphatidylcholines (PC) accounted for 29.6% and 18.2% of the
dataset, respectively. Representative raw data showing separation of
the various lipid classes detected are shown in Supplementary Infor-
mation, Supplementary Fig. S2, showcasing the excellent lipid cover-
age obtained in our method. Exploratory analysis to investigate
lipidome differences among different ovarian cancer histological types
was first conducted. In addition to common lipids, 22 gangliosides
were annotated by matching their elemental formulas and exact
masses to online databases, including LipidMaps (29) andHMDB(30).
MS/MS information was available for 16 of the 22 annotated gang-
liosides and was also matched against online databases (Supplemen-
tary Table S6). PCA using the combined set annotated lipids did not
show any clear clustering based on various ovarian cancer histological
types (Supplementary Fig. S3B). Unsurprisingly, the one sample with
low-grade serous carcinoma (LGSC) histology deviated the most from
the rest of the samples. This could be due to the low number of LGCS
samples present in the dataset (n ¼ 1). Compared with high-grade
serous carcinoma (HGSC), LGSC has a different mode of carcino-
genesis with distinct molecular-genetic features (31).

To investigate differences between patients with ovarian and non-
ovarian cancers at the lipidome level, unsupervised and supervised
multivariate analysis was conducted. PCA using the combined set of
(þ) and (�) RP UHPLC-MS 994 annotated lipids showed minimal
separation between patients with ovarian and nonovarian cancers
(Supplementary Fig. S4A). This was expected as differences between
different types of malignancies are likely to be relatively subtle. The
dataset was further explored with supervised multivariate analysis.
Orthogonal partial least squares-discriminate analysis (oPLS-DA) for
the same dataset indicated better clustering between the two groups
(Supplementary Fig. S4B), which could further be improved via ML-
based feature selection processes. Performance characteristics of this
oPLS-DA model with 10-fold cross validation were a modest 0.73

sensitivity and 0.65 specificity. To better visualize lipidome differences
between patients with ovarian and nonovarian cancers, the dataset was
analyzed on a lipid class basis. Fold changes and statistical significance
between ovarian and nonovarian cancer groups were calculated for all
annotated lipids (Fig. 2). Among the 994 annotated lipids, 218 had
FDR corrected P values of <0.05 (q < 0.05). Fold changes calculated
between ovarian and nonovarian cancer groups showed an overall
decrease in the serum lipid abundances of patients with ovarian cancer.
Seventy-four percent of the detected ether phosphatidylethanolamines
(PE O-), for example, had significantly decreased abundance in
patients with ovarian cancer. Lipid classes, including PC, ether PCs
(PC O-), lysophosphatidylcholines (LPC), and lysophosphatidyletha-
nolamines (LPE), were also significantly reduced in women with
ovarian cancer (Fig. 2). Although most lipids were reduced in the
ovarian cancer samples, some lipids, including ceramides (Cer) and
TG, were increased. Interestingly, the only two ceramides species that
were lower in patients with ovarian cancerwereCer(d18:0/22:0) and its
oxidated form Cer(t18:0/22:0).

An ML workflow, described in the methods section and Fig. 1, was
developed to select features that better describe lipidome differences
between ovarian and nonovarian cancer conditions. The one hundred
best differential lipids were selected (Fig. 3), including ceramides, LPC,
PC, PC O-, PE O-, and TG, indicating diverse changes in the
circulating lipid abundances in serum of patients with ovarian cancer.
Unsupervised PCA and supervised oPLS-DA using these selected 100
lipids (Fig. 3) showed better clustering than the previously built
models using all annotated lipids (Supplementary Fig. S4). Perfor-
mance characteristics of the oPLS-DA model on the first 2 latent
variables were 0.75 and 0.71 cross-validated sensitivity and specificity,
respectively. Comparison of the relative lipid abundances in ovarian
and nonovarian cancer conditions showed patterns of alterations
based on the lipid class, with majority of the lipids showing decreased

Figure 2.

Annotated lipids, grouped by lipid class, show-
ing number of lipids with positive and negative
fold changes between ovarian and nonovarian
cancer groups. Fold changes were calculated as
the base 2 logarithm of the average lipid abun-
dance ratios for ovarian cancer versus nonovar-
ian cancer. A positive fold-change value indi-
cates higher levels in ovarian cancer samples.
Negative values indicate lower levels in ovarian
cancer samples. The number of lipids with neg-
ative fold-change values and positive fold-
change values for each lipid class are shown as
blue and orange bars, respectively. The number
of statistically significant lipids (FDR corrected
P <0.05) with negative and positive fold-
changevalues are labeledas lightblueandorange
bars, respectively. TG, Triacylglycerols; PC, Phos-
phatidylcholines; PC O-, Ether phosphatidylcho-
lines; SM, Sphingomyelins; LPC, Lysophosphati-
dylcholines; Cer, Ceramides; PE O-, Ether phos-
phatidylethanolamines; Car, Carnitines; HexCer,
Hexosylceramides; PE, Phosphatidylethanola-
mines; DG, Diacylglycerols; FA, Fatty acids; PI,
Phosphatidylinositols; CE, Cholesterol esters; LPE,
Lysophosphatidylethanolamines; PS, Phosphati-
dylserines; PG, Phosphatidylglycerols; MG, Mono-
radylglycerols; LPE O-, Ether Lysophosphatidy-
lethanolamines; PS O-, Ether phosphatidylserines.
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serum abundance in patients with ovarian cancer. Only ceramides,
some SM, cholesterol, FA(20:1), diglycerides, monoglyceride (MG),
and some TG species were increased in the patients with ovarian
cancer. TG species showed variable trends based on the FA side chain:
Most TG species with long fatty acyl side chain composition were
increased whereas TG with short fatty acyl side chains were decreased.
In addition, 15 of the 100 selected lipids had significantly different fold
changes between ovarian and nonovarian cancer groups (log2 fold
change <�0.5 or log2 fold change > 0.5), confirming that lipids exhibit
profound changes in ovarian cancer. These mainly consisted of PE O-,
PC O-, and PC.

Lipidome analysis of HGSC
The heterogeneity of ovarian cancer is one major obstacle in

biomarker discovery (22). HGSC accounts for only 30% of early-
stage ovarian cancer, but 86% of advanced-stage ovarian cancer. The
overwhelming majority of early-stage ovarian cancers (�69%) are of

non-HGSCs, the ovarian cancer types that are generally slow-growing,
less aggressive, and therefore commonly detected at early stages (1). In
contrast, most advanced-stage ovarian cancers (86%) are HGSC,
which are aggressive and typically not detected until advanced stage.
Thesefindings indicate that, potentially, HGSChas biologicalmechan-
isms of development and progression distinct from non-HGSCs. We
investigated whether HGSC exhibits a distinctive lipid profile com-
pared with other ovarian cancer subtypes. The Welch’s t test was
performed to select statistically different features between HGSC and
other ovarian cancer types. Seventy-four lipids were selected as
statistically significant (P < 0.05); however, when P values were
corrected for false positives (FDR corrected) no lipids remained
statistically significant, indicating that lipidome differences between
different histological types are likely small, or not present in the subset
of annotated lipids. Nevertheless, we still examined the lipidome of
HGSC with the 74 selected features with a P value of < 0.05. Com-
parison of the serum lipid abundance of HGSC versus non-HGSC

Figure 3.

Serum lipidome analysis of ovarian and nonovarian cancer samples using only the abundances of select lipids. Lipids were selected with the following feature
selectionworkflow: One of the two highly correlated lipidswas filtered out using a Pearson correlation coefficient cutoff value of 0.85. Next, lipidswith P values lower
than 0.05 were selected, followed by random forest feature selection in which lipids with a Gini index greater than the mean of all Gini indices were selected. A, PCA
score plot showing clustering of ovarian and nonovarian cancer samples using the selected lipids. B, o-PLS-DA score plot for the same dataset. Ovarian cancer
samples are depicted as green squares and nonovarian cancer samples are shown with gray diamonds. C, Fold changes for the selected lipids. Fold changes were
calculated as the base 2 logarithm of the average lipid abundance ratios for ovarian cancer versus nonovarian cancer. A positive fold-change value indicates higher
levels in ovarian cancer samples. Negative values indicate lower levels in ovarian cancer samples. TG, Triacylglycerols; PC, Phosphatidylcholines; PC O-, Ether
phosphatidylcholines; SM, Sphingomyelins; LPC, Lysophosphatidylcholines; Cer, Ceramides; PE O-, Ether phosphatidylethanolamines; Car, Carnitines; HexCer,
Hexosylceramides; PE, Phosphatidylethanolamines; DG, Diacylglycerols; FA, Fatty acids; PI, Phosphatidylinositols; CE, Cholesterol esters; LPE, Lysophosphatidy-
lethanolamines; PS, Phosphatidylserines; PG, Phosphatidylglycerols; MG, Monoradylglycerols; LPE O-, Ether Lysophosphatidylethanolamines; PS O-, Ether
phosphatidylserines.
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ovarian cancer types showed subtle differences (Supplementary
Fig. S5). Only one TG species showed a log2 fold change greater than
0.5. Overall, the serum lipidome of HGSC showed increased lipid
abundance compared with non-HGSC types. Most lipid classes,
including all ceramides, and most glycerophospholipids, and glycer-
olipids, were increased in HGSC, whereas only ether phospholipids,
including PE O- and PC O- and a few SM, PC and PE species, were
reduced. To further investigate the serum lipid profile of HGSC, we
compared the serum lipidome of HGSC with nonovarian cancer
malignancies. The Welch’s t test selected 202 statistically significant
features with FDR corrected P values of <0.05. Fold changes between
HGSC and nonovarian cancer showed that, unlike HGSC versus other
ovarian cancer subtypes, in this case most lipid classes were reduced in
HGSC (Supplementary Fig. S6). These results bear similarities with our
previous analysis of all ovarian cancer subtypes versus nonovarian
cancer (Fig. 3), reinforcing the finding that lipid alterations between
ovarian and nonovarian cancer conditions are much more profound
than they are between different histological ovarian cancer types.

Stage-stratified analysis
Next, we evaluated the lipidome profile associated with early-stage

ovarian cancer (I and II) and advanced-stage ovarian cancer (III and
IV) versus nonovarian cancer conditions using a stage-stratified
feature selection approach, as described in the Materials and Methods
section. The early-stage ovarian cancer cohort consisted of 93 patients
with ovarian cancer and 117 patients with nonovarian cancer, whereas
the late-stage ovarian cancer cohort had 115 patients with ovarian
cancer and 117 patients with nonovarian cancer. One-hundred twenty
lipids were selected as the best differential lipids between early-stage
ovarian and nonovarian cancers whereas 102 lipids were selected for
late-stage ovarian versus nonovarian cancer conditions. Although
fewer lipids were selected for late-stage ovarian cancer versus non-
ovarian cancer than early-stage ovarian cancer versus nonovarian
cancer, a greater diversity of lipid classes was altered for late-stage
ovarian cancer (Supplementary Tables S7 and S8). Both early- and late-
stage ovarian cancer exhibited changes in glycerophospholipids, gly-
cerolipids, and sphingolipids, whereas some lipid classes—including
diglycerides, fatty acids, and cholesterol—differed only for late-stage
patients with ovarian cancer. Most of the selected differential lipids for
both early-stage and late-stage ovarian cancer included PC, TG, PCO-,
PE O-, and Cer (Fig. 4). Compared with late-stage ovarian cancer, a
higher number of LPC and SM species were selected for early-stage
ovarian cancer. Furthermore, as expected, lipidome alterations in early
disease stages were less prominent than in advanced disease stage.
Volcano plots showing the fold changes and statistical significance for
the selected lipids show that ceramides, some TG, and SM were
increased in both early- and late-stage ovarian cancer. Lipid classes
identified as significantly altered (P value<0.05 and fold change greater
than log2 0.5) in early-stage ovarian cancer included PEO-, PCO-, PC,
and one PS species (Supplementary Table S9). Late-stage ovarian
cancer exhibited significant changes in Cer, PE O-, PC O-, PC, LPC,
PS, and TG (Supplementary Table S9).

Among the differentially abundant lipids selected for early-stage
or late-stage ovarian cancer versus nonovarian cancer conditions,
42 lipids were altered in both subgroups (Supplementary Fig. S7).
These were mainly sphingolipids, including Cer and SM, glyceropho-
spholipids, including PC, PS and PI, ether phospholipids (PC O-and
PE O-), and TG species, Lipids with fatty acid alkyl chains of C18:0,
C18:1, C18:2, C20:4, C22:5, and C22:6 were frequently observed in this
panel. In addition, all selected ceramide species were composed of
d18:1 or d18:2 fatty acyl backbone, whereas the fatty acyl side chains

were very long fatty acids, including C24, C25, or C26. Similarly, the
sn-1 fatty acid alkyl chain for most PE O-, PE, and PS species were
composed of C18:1 or C18:2, whereas sn-2 fatty acid alkyl chains were
composed of very long chain fatty acyl chains of C22 and C24. This
panel of lipids also consisted of glycerophospholipids with dietary odd
fatty acyl chain composition (C17:0, C17:1, and C17:2). Next, fold
changes for these 42 lipids between early- and late-stage patients with
ovarian versus nonovarian cancers were analyzed. Subtle changes in
serum lipid abundance were observed for early-stage ovarian cancer
versus nonovarian cancer. Among the selected lipids, PEO-(17:1/20:4)
had the greatest fold change. Lipid alterations for advanced stage
ovarian cancer versus nonovarian cancer were much more profound
than in early-stage patients with ovarian cancer, and 42 lipids
showed alterations that were directionally concordant with the
disease stage. These results indicate that changes in the serum lipid
abundance of ovarian cancer can be detected when the cancer is
localized, and that these changes are amplified as the diseases
progresses (Supplementary Fig. S7).

In addition, we evaluated the serum lipidome of early-stage HGSC
samples using the 120 lipids selected as differential features for early-
stage ovarian cancer versus nonovarian cancer (Supplementary
Fig. S8). In line with our lipidome analysis of HGSC shown earlier
(Supplementary Fig. S6), the serum lipidome of early-stage serous
patients exhibited alterations that inmost cases were like the combined
early-stage ovarian cancer cohort of various histological types (Fig. 4).
Only a few PC species showed increased abundance in early-stage
serous samples. In addition, five lipids, including TG(56:6), PC(O-
35:4), PC(O-32:2), PE(O-18:2/20:1), and PC(37:3), showed significant
alteration (Supplementary Fig. S8), suggesting that circulating lipids
can aid in early diagnosis of serous carcinoma.

Biomarker panel
Considering the importance of biomarkers in ovarian cancer diag-

nosis and management, we selected a panel of lipids to discriminate
ovarian cancer and from nonovarian cancer conditions with the
maximum possible accuracy. All 994 annotated lipids from (þ) and
(�) RP UHPLC-MS datasets were combined and subjected to the ML
workflow detailed in the Materials and Methods section and Fig. 1.
Although the AUC values for the imbalanced dataset (ovarian cancer n
¼ 144, nonovarian cancer n ¼ 83) were acceptable, the specificity for
these classification models was very low (Supplementary Table S10).
For the imbalanced dataset, a logistic regression model provided the
best AUC value of 0.76 whereas the specificity for this model was only
0.50. Thus, to achieve better classification power, the training set was
balanced using the SMOTE (28), yielding a 10-lipid panel that con-
sisted mainly of ceramides and ether-linked glycerophospholipids
(Table 1). The best classification performance for the training set was
achieved with a random forest classier: The AUC, sensitivity, and
specificity values under 10-fold cross validation were 0.85, 0.78, and
0.76, respectively (Supplementary Table S11; Table 2). For the test set,
the random forest classifier provided the AUC value of 0.82 whereas
the sensitivity and specificity values were 0.78 and 0.76, respectively.
The selected panel of lipids provided good classification performance
for the test set, highlighting the potential of lipidmarkers to distinguish
the serum lipid profile of Korean women with ovarian cancer and
different types of malignant or benign gynecological diseases.

As accurate early diagnosis of ovarian cancer, especially of early-
stage HGSC is crucial to improve clinical outcomes, we evaluated the
classification power of this 10-lipid panel for early-stage samples (n¼
31) versus nonovarian cancer samples (n¼ 30) from the test set, as well
as for all 28 early-stage HGSC samples (samples used in training and

Ovarian Cancer Lipidomics

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 33(5) May 2024 687

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/33/5/681/3448847/681.pdf by KM

LA - Keim
yung U

niversity user on 14 O
ctober 2024



test sets) versus nonovarian cancer samples (n ¼ 30). Random forest
classification model for early-stage versus nonovarian cancer samples
gave the AUC value of 0.75 whereas the specificity value was only of
0.45 (Supplementary Table S11). Better specificity could be achieved by
selecting a panel of lipids specifically for discriminating early-stage
ovarian cancer from nonovarian cancer conditions. In addition,
because the nonovarian cancer dataset consisted of invasive cervical
cancer samples, it is not surprising to obtain low classification per-
formance as we are discriminating early-stage ovarian cancer samples
from other cancers. Improved classification performance was achieved
for a sample set without cervical cancer samples (Supplementary
Table S12). The 10-lipid biomarker panel discriminated early-stage
ovarian cancer from benign conditions (without cervical cancer) with
the AUC, sensitivity, and specificity values of 0.86, 0.81, and 0.69,
respectively.

Comparison of the relative abundances of these 10 selected lipid
markers between early-stage patients with ovarian cancer, late-stage
ovarian cancer, and nonovarian cancer showed trends following the

course of the disease (Supplementary Fig. S9). Ceramides showed an
increasing trend whereas phospholipids decreased with the disease
progression. Although we were not able to compare diseased patients
against normal controls, the directionally concordant changes in lipid
abundances suggest that the lipidome profile of women with gyneco-
logical malignancies can be monitored for improved clinical triage.

Serum ganglioside alterations with ovarian cancer
Previous studies have indicated increased gangliosides levels in

ovarian cancer cell lines, tissues, serum, as well as ascites fluid from
patients with ovarian cancer (22, 23), suggesting that gangliosides
could play a role as ovarian cancermarkers. However, existing data are
still sparse regarding the importance of these glycolipids in ovarian
cancer development (22). A total of 22 ganglioside species were
detected in serum by LC/MS (Supplementary Table S6), and their
structures confirmed by tandem MS experiments. Examination of the
average ganglioside abundances for patients with early-stage ovarian
cancer, advanced-stage ovarian cancer, and nonovarian cancer showed

Figure 4.

Serum lipidome differences in early-stage (I and II) or advanced-stage (III and IV) patients with ovarian versus nonovarian cancers using only select lipids. Most
relevant lipid species for differentiating early-stage ovarian cancer from nonovarian cancer, and advanced-stage ovarian cancer from nonovarian cancer were
selected using random forests feature selection. Volcano plots showing lipidome differences with 120 best discriminating lipids selected for early-stage ovarian
cancer versus nonovarian cancer (A) and 102 best discriminating lipids selected for advanced stage ovarian cancer versus nonovarian cancer samples (B). Lipid
species are color-coded by lipid class, as indicated on the plots. Fold changeswere calculated as the base 2 logarithmof the average lipid abundance ratios for ovarian
cancer versus nonovarian cancer. A positive fold-change value indicates higher levels in ovarian cancer samples. Negative values indicate lower levels in ovarian
cancer samples.P valueswere calculated using theWelch’s t test. Bar graphs showing number of lipids selected, groupedby lipid class, for early-stage ovarian cancer
versus nonovarian cancer (C) and advanced-stage ovarian cancer versus nonovarian cancer (D). TG, Triacylglycerols; PC, Phosphatidylcholines; PC O-, Ether
phosphatidylcholines; SM, Sphingomyelins; LPC, Lysophosphatidylcholines; Cer, Ceramides; PE O-, Ether phosphatidylethanolamines; Car, Carnitines; HexCer,
Hexosylceramides; PE, Phosphatidylethanolamines; DG, Diacylglycerols; FA, Fatty acids; PI, Phosphatidylinositols; CE, Cholesterol esters; LPE, Lysophosphatidy-
lethanolamines; PS, Phosphatidylserines; PG, Phosphatidylglycerols; MG, Monoradylglycerols; LPE O-, Ether Lysophosphatidylethanolamines; PS O-, Ether
phosphatidylserines; CHL, cholesterol.
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an increase in overall ganglioside abundances concurrent with disease
progression (Supplementary Fig. S10). However, the changes in
ganglioside abundances between patients with nonovarian and ovar-
ian cancers were not significant if tested univariately. Therefore, the
diagnostic power of gangliosides was explored by combining them in
panels. Classification models were built using all annotated ganglio-
sides, which showed acceptable performance. The best random forest
model provided AUC values for training and test sets of 0.78 and 0.68,
respectively. To investigate whether gangliosides could further
enhance the diagnostic power of the previously selected 10-lipid panel
(Supplementary Table S11; Table 1), the top 7 discriminating gang-
liosides features in these models were added to the panel, resulting in a
new 17-lipid panel (Supplementary Table S13). Improved AUC values
were obtained for training and test sets with this set of lipids: The best
AUCvalues for the training and test set were 0.88 and 0.83, respectively
(Supplementary Table S14; Table 2). As with previous comparisons,
the training set was balanced using SMOTE and was cross-validated
10-fold.

AutoML classification
In addition to traditional ML approaches, an AutoML method,

Auto-sklearn (32), that automatically identifies optimal ML pipelines
for a given task, was applied. The Auto-sklearn technique uses
Bayesian optimization, meta-learning, and ensemble techniques to
automatically select ML pipelines. Through Bayesian optimization,
it assesses hyperparameter settings for optimal results, whereas

meta-learning helps to learn from past experiences to enhance
performance on new tasks. The framework also constructs ensem-
bles by selecting models that minimize training data errors. Here,
the AutoML technique (detailed in Materials and Methods section)
provided improved AUC, accuracy and specificity for the test set
using the 17-lipid biomarker panel. Classification metrics using
auto-sklearn were 0.85, 0.78, 0.75, and 0.82 AUC, accuracy, sen-
sitivity, and specificity, respectively (Table 2).

Serum lipidomics of normal controls versus patients with
ovarian cancer

Blood samples from normal controls were collected for 150 women
during regular checkups. Although these controls were excluded from
the feature selection process, we investigated whether lipids selected
for differentiating patients with ovarian cancer from nonovarian
cancer could also distinguish normal controls. Clustering between
ovarian cancer and normal controls was investigated using the full set
of annotated lipids (Supplementary Fig. S11). Fold changes between
ovarian cancer and normal controls for these 100 select lipids also
showed lower serum lipidome abundances in patients with ovarian
cancer (Supplementary Fig. S12). Ceramides and TG showed variable
trends with most ceramides showing increased abundances in patients
with ovarian cancer. Compared with our previous analysis of ovarian
cancer versus nonovarian cancer conditions (Fig. 3), lipid alterations
between ovarian cancer and normal controls were much more
profound. Several lipid species showed significant differences: PC

Table 1. Discriminant (ovarian vs. nonovarian cancers) 10-lipid panel selected using a random forests algorithm.

Log2 fold change FDR corrected P value

Annotation Adduct
Experimental
m/z

Mass
error
(ppm)

MS
Confidence
level

Early
OC/non-OC

Advanced
OC/non-OC

Early
OC/non-OC

Advanced
OC/non-OC

Cer(d18:1_16:0) (MþH)þ 538.5199 0.87 2 0.14 0.40 0.02 1E�09
Cer(d18:1_25:1) (MþH)þ 662.6451 0.77 2 0.15 0.23 0.08 0.002
Cer(d18:2_23:0) (MþH)þ 634.6138 0.78 2 0.12 0.30 0.19 1E�06
LPC(14:0) (MþH)þ 468.3014 0.42 2 �0.45 �0.59 0.0007 3E�07
PC(O-36:5) (MþH)þ 766.5756 1.39 2 �0.43 �0.76 0.007 1E�07
PC(40:7) (MþCH3COOH-H)

� 876.6123 �0.14 2 �0.51 �0.71 0.03 4E�08
PC(O-32:2) (MþCH3COOH-H)

� 716.5596 0.98 2 �0.15 �0.20 0.029 0.00026
PE(O-18:1_22:4) (MþH)þ 780.5889 �1.66 2 �0.24 �0.38 �0.38 7E�07
PE(O-38:4) (MþH)þ 754.5753 1.12 2 �0.46 �0.78 0.00071 2E�09
PS(18:0_20:4) (MþH)þ 812.5432 �0.48 2 �0.15 �0.31 0.040 1E�8

Note: Proposed lipid annotation, main adduct type detected, experimental monoisotopicm/z value, mass error (ppm), MS annotation confidence level, P values, and
abundance log-transformed fold changes are shown. MS annotation level was assigned on the basis of the following criteria: (i) MS1 andMS/MS spectrum of standard
matched to the feature; (ii) MS1 andMS/MS spectrumof the featurematchedwith library spectra; and (iii) Tentative ID assignment based on elemental formulamatch
with literature; (iv) unknowns.

Table 2. Machine learning performance of various lipid panels.

10-Lipid panel
training set

10-Lipid panel
test set

17-Lipid panel
training set

17-Lipid panel
test set

AutoML 17-lipid
panel test set

OC: n ¼ 144,
Non-OC: n ¼ 144

OC: n ¼ 64,
Non-OC: n ¼ 34

OC: n ¼ 144,
Non-OC: n ¼ 144

OC: n ¼ 64,
Non-OC: n ¼ 34

OC: n ¼ 64,
Non-OC: n ¼ 34

AUC 0.85 � 0.07 0.82 0.88 � 0.07 0.83 0.85
Accuracy 0.77 � 0.09 0.78 0.81 � 0.09 0.76 0.78
Sensitivity 0.78 � 0.15 0.78 0.83 � 0.09 0.75 0.75
Specificity 0.76 � 0.12 0.76 0.79 � 0.12 0.76 0.82

Note: Classification performance using a random forest classier and theAutoMLmodel. The top 7 discriminant gangliosideswere added to the 10-lipid panel to create
the 17-lipid biomarker panel. Training data were balanced with the Synthetic Minority Oversampling Technique (SMOTE).
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(18:0/22:6) and LPC(18:2) were reduced approximately 10- and 6-fold
in patients with ovarian cancer, respectively. The classification per-
formance of the selected 10-lipid maker panel was also evaluated for
age-matched ovarian cancer versus normal controls (Supplementary
Table S11). Because the dataset had a larger number of ovarian cancer
samples than normal controls, SMOTE (28) was applied to balance the
number of samples. Classification performance for the balanced set of
patients with ovarian cancer versus normal controls was evaluated
using five ML methods: Random forest, SVM, logistic regression,
k-NN, and voting method. The best results were obtained with a
random forest model. Performance characteristics of this model were
0.94, 0.88, 0.91, and 0.84 for the AUC, accuracy, sensitivity, and
specificity, respectively.

Discussion
Accurate distinction between ovarian cancer and other benign or

cancerous gynecological malignancies remains an unmet clinical
challenge with significant impact on patient survival (7). Significantly
improved survival rates are observedwhenwomenwith ovarian cancer
are referred to tertiary care specialists rather than general gynecolo-
gists, and although treatment of women with benign diseases by
specialists imposes no harm, benign disease misdiagnosed for cancer
causes unnecessary burden and patient anxiety (6, 33–36).

In recent years, dysregulation in lipid metabolism has been estab-
lished as a crucial feature of ovarian cancer progression, reflecting the
increased energy demands of highly proliferating cancer cells and cell
membrane remodeling (37). However, previous ovarian cancer lipi-
domic studies have been limited by low numbers of early-stage
patients, low lipidome coverage, and biases originating in the sample
collection process (15, 16, 21). Although alteration in lipidmetabolism
is a characteristic feature of ovarian cancer, findings from different
studies still show numerous inconsistencies (37). Previous data show
racial/ethnic differences in risk, incidence, and survival of patients with
ovarian cancer (38–40), yet most studies consist mainly of non-
Hispanic white women with European ancestry. Compared with other
racial groups, Asian women have a higher incidence rate of mucinous
ovarian tumors (41) and it has been shown that the protein biomarker
HE4 may be more useful for that cancer in this ethnic group (40). It is
generally agreed that studies in specific racial/ethnic groups are needed
to better understand ovarian cancer diversity and accelerate preventive
and diagnostic strategies.

The study showcased here presents results for the comprehensive
analysis of the serum lipidome of patients with ovarian cancer of
Korean descent, recruited from two different clinical sites. A brief
outline of the comparisons conducted in this study is presented in
Supplementary Fig. S13. Among other findings, the comparison
yielded a 17-lipid panel that distinguishes between patients with
ovarian and nonovarian cancers (Table 2; Supplementary Fig. S14
and Supplementary Table S15). Furthermore, a consistent decrease in
the overall lipid abundance across various ovarian cancer stages and
histological types was observed in our dataset when compared against
nonovarian cancer conditions. These results agree with previous
studies showing an overall abundance decrease in serum glyceropho-
spholipid abundances in patients with ovarian cancer of non-Hispanic
white and European decent (15, 16, 21). This overall decrease in lipid
abundance is likely due to altered lipoprotein level, as suggested in
previous studies (42, 43). High-density lipoprotein (HDL) particles are
rich in phospholipids; decreased HDL-cholesterol levels have been
reported in patients with ovarian cancer (42). Furthermore, stage-
stratified analysis comparing early- or advanced-stage patients with

ovarian versus nonovarian cancers (Fig. 4; Supplementary Fig. S7)
suggests that lipid alterations are detectable even in the early stages,
amplifying as the disease progresses. These results further underscore
the potential role of circulating lipids in monitoring ovarian cancer
development and progression. Similar results were reported by Buas
and colleagues (21) when comparing benign diseases with ovarian
cancer (21) and recent studies suggest changes in circulating lipid
abundances in pre-diagnostic specimens (44), indicating that lipid
profiles exhibit changes years before ovarian cancer diagnosis. Mount-
ing evidence suggests that monitoring lipid profiles could aid in
identifyingwomenwho are at higher risk of developing ovarian cancer.

Although most lipids exhibited wide-scale abundance reductions in
patients with ovarian cancer, some lipid classes, including Cer, some
TG species, and DG, showed a consistent increase across the disease
spectrum. Increase in blood ceramides levels have been frequently
reported for ovarian cancer (16, 20, 45, 46), with significant increase in
specific ceramides, including C16, C20, C22, and C24 derivatives. In
our study, a consistent increase in almost all statistically significant
ceramide species was observed for patients with ovarian cancer.
Ceramides identified as differentially abundant for ovarian cancer
included those with d18:0, d18:1, and d18:2 fatty acyl backbones with
C16, C23, C24, C25, and C26 fatty acid chains. Previously, Niemi and
colleagues (15) identified distinctive Cer alterations based on fatty acid
chain length: Ceramide species with d16:1, d18:0, d18:1, and d18:2
backbones of 16:0, 18:0, 20:0, and 24:1 fatty acyl side chain were
increased in patients with ovarian cancer, whereas those with 23:0 and
24:4 fatty acid side chain were decreased. In our study, however, no
such trend was observed, and all key Cer species showed increased
abundance in ovarian cancer. Although understanding the biological
basis of these lipid alterations in ovarian cancer is an active area of
investigation, literature suggests that increased Cer levels may be
associated with the increased activity of ceramide synthases that
promote tumor growth (47). The frequently observed dysregulation
of ceramides in ovarian cancer along with their biological importance
relative to tumor growth calls for a deeper understanding of ovarian
cancer sphingolipid metabolism.

Along with increased Cer levels, reduced abundance of ether
phospholipids such as PE O- and PC O- is also frequently reported
in ovarian cancer studies (15). Here, we observed 74% of the detected
PE O- species to be significantly decreased in patients with ovarian
cancer, suggesting that PE O- are of particular importance in ovarian
cancer pathogenesis. In particular, in agreement with previous studies,
we observed decreased abundance of ether phospholipid species,
including PE (O-18:1_22:4), PE(O-18:1_24:5; ref. 46), and PC(O-
34:2; ref. 15). In addition, ratios between Cer and ether phospholipids
abundances have frequently been reported as potential markers for
ovarian cancer (46, 48), suggesting an important association between
sphingolipid and ether phospholipid metabolism (49). Salminen and
colleagues (48) identified the ratio betweenCer(d18:1/18:0) andPC(O-
38:4) as a prognostic marker for ovarian cancer. Four of the best 10
discriminating lipids were ether phospholipids and 3 were ceramides
(Table 1), highlighting their diagnostic value and reinforcing the
notion that a further understanding of the interplay between these
lipid families is much needed in the context of ovarian cancer.

A recent study has suggested gangliosides GD2 and GD3 as poten-
tial diagnostics for ovarian cancer (22). Gangliosides are a class of
glycolipids present in the plasma membranes of almost all vertebrate
cells and are crucial in biological processes that include cell recog-
nition and adhesion, transmembrane signaling, cell growth, and differ-
entiation (50). Gangliosides are known to be involved in tumor–host
immune system interactions (51), and studies have reported

Sah et al.

Cancer Epidemiol Biomarkers Prev; 33(5) May 2024 CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION690

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/33/5/681/3448847/681.pdf by KM

LA - Keim
yung U

niversity user on 14 O
ctober 2024



pronounced local defects in ovarian cancer immune responses (52, 53).
Gangliosides are shed into the extracellular environment, particularly
during the malignant transformation of cells (54, 55), making them
ideal biomarker candidates. Past studies have reported lower survival
rates of patients with cancer with increased circulating ganglioside
levels (23). Despite the potentially important role of gangliosides in
ovarian cancer, however, reports on ganglioside expression in patients
with ovarian cancer are quite sparse. In our study, we conducted in
depth profiling of gangliosides, qualitatively observing an increased
average abundance in patients with ovarian cancer compared with
nonovarian cancer conditions. Abundance differences, however,
were not statistically significant. A generally increasing trend in
abundance with disease malignancy was observed, potentially
reflecting increases in ganglioside secretion associated with tumor
development (23). These results are in line with previous studies
reporting significantly higher ganglioside levels in ovarian cancer
cells compared with nonovarian cancer malignancies (23). In
addition, our lipid panel results showed a moderate AUC improve-
ment with the addition of 7 select gangliosides (Supplementary
Table S14; Table 2). Further improvement was achieved with the
use of the developed AutoMLmethod (Table 2). Future quantitative
studies with enhanced sensitivity and specificity for gangliosides are
likely to facilitate biomarker discovery and solidify the development
of therapeutic targets for ovarian cancer.

One salient characteristic of our study was the relatively large
sample size for patients with ovarian cancer (n ¼ 208), including
93 early-stage patients with ovarian cancer (stage I and II). Securing
samples from early-stage patients with ovarian cancer is a major
challenge and thus most studies reported only on a very limited
number of early-stage cases. In addition, as mentioned previously,
most studies are limited to samples from non-Hispanic white women.
Here, a stage-stratified analysis for 93 early-stage ovarian cancer
samples versus 117 nonovarian cancer samples selected a variety of
lipid classes as differential lipids (Fig. 4; Supplementary Fig. S7).
Among the selected lipids, ether glycerophospholipids exhibited sig-
nificant changes in early disease stage emphasizing their potential for
distinguishing ovarian cancer from other gynecological malignancies
when the cancer is localized. Of all early-stage samples, the cohort
included 23 early-stage patients with HGSC—the deadliest subtype of
ovarian cancer (56). Only 13% of serous ovarian carcinomas are
diagnosed when this cancer is localized, leading to poor prognosis
and very low survival rates. Our lipidome analysis of early-stage
patients of serous histology showed systematic alterations in lipid
abundance based on lipid class. Although, most lipid alterations for
early-stage serous and early-stage ovarian cancer samples of various
histological types showed the same overall trend, an increased abun-
dance of some specific PC species was observed only in the early-stage
serous subtype (Fig. 4; Supplementary Fig. S8), indicating that some
lipid alterations may be unique to HGSC. Alterations in the
majority of lipid classes, however, followed a pattern similar to
the other histological types. As indicated in Supplementary Fig. S5,
as well as the exploratory PCA analysis of different ovarian cancer
subtypes (Supplementary Fig. S3B), very subtle differences were
observed between different ovarian cancer histological types. Mean-
while, lipidome analysis between HGSC versus nonovarian cancer
conditions (Supplementary Fig. S6) and all ovarian cancer subtypes
versus nonovarian cancer (Figs. 3 and 4) exhibited more prominent
changes, suggesting that changes in lipid profile associated with
ovarian cancer versus nonovarian cancer cases surpass most of the
differences caused by the histological diversity of ovarian cancer.
These findings underscore the daunting challenge of identifying

ovarian cancer subtype-specific biomarkers. Our results are in line
with previous metabolomics studies (15), but further analysis with
larger samples of especially of early-stage patients with serous
carcinoma will be required to confirm these observations as well
as to identify makers unique to HGSC.

The dataset presented here also provides an opportunity to contrast
lipid changes associated with ovarian cancer against cervical cancer.
Data suggest that the ovarian cancer lipidome profile is distinguishable
from that of cervical cancer, opening the possibility of developing
screening tools to simultaneously test for both ovarian and cervical
cancers. Because the testing for cervical cancer via Pap tests has been
routinely performed for over 50 years, developing a lipid-based Pap
tests screening strategy for both cervical and ovarian cancers could lead
to improved ovarian cancer diagnosis and disease prognosis (13). In
the future, we expect that further diagnostic gains could be achieved by
integrating lipid/glycolipid markers with existing protein biomarkers
such as CA125 and/or HE4 (21).

Our study had some limitations. We note that our study does not
account for factors such as the use of oral contraceptives, postmen-
opausal hormone use, and body mass index. These factors may
influence the lipid profile and introduce confounding effects in the
dataset. In addition, our study does not examine the performance of
our selected lipid markers against, or in conjunction with CA125 and
HE4. As suggested previously (21), a combination of CA125 and
circulating lipid markers may provide enhanced accuracy in distin-
guishing patients with ovarian cancer from nonovarian cancer. Fur-
ther experiments using chemical standards and targetedmetabolomics
methods are also needed to validate our findings.

In conclusion, an in-depth metabolomic analysis of the serum
lipidome of several benign and malignant gynecological diseases in
Korean women revealed lipids unique to ovarian cancer. In com-
parison with benign ovarian and uterine tumors and invasive
cervical cancer, the serum lipidome of ovarian cancer shows
reduced abundance of most lipid classes, except for a few specific
cases. Although ovarian cancer metabolomics still show some level
of disagreement, especially regarding PC and LPC abundances,
most studies, including our own, have consistently provided evi-
dence of increased Cer levels. Alterations in specific ceramide
species have frequently been reported, and thus a detailed biological
understanding of sphingolipid metabolism in ovarian cancer war-
rants further efforts. Reductions in PE O- and PC O- have also been
frequently reported, and thus the link between ether phospholipid
metabolism and ovarian cancer calls for further investigation. Our
data show the ovarian cancer lipid profile can not only be distin-
guished from benign conditions but also from other gynecological
cancers, suggesting that future work focusing on identifying lipid
markers unique to different gynecological malignancies may lead to
lipid panels that can simultaneously test for multiple diseases.
Developing clinical tests that combine lipid markers with already
existing proteins markers, including CA125, may provide a route
for enhanced diagnosis, detection, and accurate triage of women
with gynecological malignancies.
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