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Impact of hyperuricemia on CKD 
risk beyond genetic predisposition 
in a population‑based cohort study
Yaerim Kim 1,11, Jinyeon Jo 2,11, Yunmi Ji 3, Eunjin Bae 4, Kwangbae Lee 5, Jin Hyuk Paek 1, 
Kyubok Jin 1, Seungyeup Han 1, Jung Pyo Lee 6,7, Dong Ki Kim 6,8, Chun Soo Lim 6,7, 
Sungho Won 2,9,10* & Jeonghwan Lee 6,7*

The bidirectional effect of hyperuricemia on chronic kidney disease (CKD) underscores the importance 
of hyperuricemia as a risk factor for CKD. We evaluated the effect of hyperuricemia on the presence 
and development of CKD after considering genetic background by calculating polygenic risk scores 
(PRSs). We employed genome-wide association study summary statistics—excluding the United 
Kingdom Biobank (UKB) datasets among published CKD Gen Consortium papers—to calculate the 
PRSs for CKD in white background subjects. To validate PRS performance, we divided the UKB 
into two datasets to validate and test the data. We used logistic regression analysis to evaluate 
the association between hyperuricemia and CKD, and performed Kaplan–Meier survival analysis 
exclusively for subjects with available follow-up data. In total, 438,253 clinical data and 4,307,940 
single nucleotide polymorphisms from 459,155 samples were included. We observed a significant 
positive association between PRS and CKD and the presence and development of CKD. Hyperuricemia 
significantly increased CKD risk (adjusted odds ratio 1.55, 95% confidence interval 1.48–1.61). The 
impact of hyperuricemia on CKD was maintained irrespective of PRS range. In addition, negative 
interaction between hyperuricemia and PRS for CKD was found. Survival analysis indicates that the 
presence of hyperuricemia significantly increased the risk of CKD development. The PRS for CKD 
thoroughly reflects the risk of CKD development. Hyperuricemia is a significant indicator of CKD risk, 
even after incorporating the genetic risk score for CKD. Irrespective of genetic risk, patients with a 
prospective risk of developing CKD require uric acid monitoring and management.
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Chronic kidney disease (CKD) is a significant public health issue with an increasing prevalence1,2. As a progres-
sive condition, identifying risk factors and prognostic factors, particularly those that can be modified, could 
significantly reduce the disease burden. Hyperuricemia is an emerging non-traditional risk factor for the devel-
opment and progression of CKD3,4. Although epidemiological studies have shown that hyperuricemia increases 
the risk of kidney dysfunction,5,6 the role of hyperuricemia in CKD is not yet fully established.

Uric acid functions as an antioxidant in the extracellular environment, and plays a protective role in neu-
rological diseases such as multiple sclerosis7,8. However, intracellular uric acid acts as a pro-oxidant, reducing 
endothelial nitric oxide activity and inhibiting cellular proliferation and migration9,10. Hyperuricemia can trigger 
hypertension and accelerate the progression of CKD as a result of long-term activation of the renin–angioten-
sin–aldosterone system, oxidative stress, and the loss of endothelial nitric oxide11–13. In addition, a high level 
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of serum uric acid has been found to be independently associated with CKD, metabolic syndrome, and cardio-
vascular disease14,15.

Since the development of uric acid-lowering agents, may experimental and clinical studies have been con-
ducted to demonstrate their disease-preventive effects16,17. Randomized trials have shown that allopurinol or 
febuxostat, which reduce uric acid levels, have a positive impact on systolic blood pressure, estimated glomerular 
filtration, and albuminuria18–20. Based on these results, several studies have attempted to identify genetic poly-
morphisms that affect serum uric acid levels and increase the risk of CKD21,22. However, the association between 
a genetic urate score and CKD has not yet been confirmed.

Recently, it was shown that polygenic risk scores (PRSs) calculated based on large-scale genome-wide associa-
tion studies (GWAS) can estimate the effect of genetic variants on the risk of the disease of interest. Considering 
the complexity of the risk factors contributing to CKD development, the PRS for CKD was calculated to evaluate 
the genetic effects on CKD and their interactions with other risk factors of interest. We aimed to evaluate whether 
hyperuricemia has an additional effect on the risk of CKD, in addition to the genetic risk assessed by the PRS, 
given its nature as a modifiable risk factor.

Methods
Study populations and data acquisition
We utilized the United Kingdom Biobank (UKB) prospective cohort data (https://​www.​ukbio​bank.​ac.​uk)23. The 
UKB is a large-scale database which comprises the data of 502,413 individuals aged between 40 and 69 years. 
For the phenotype dataset, we excluded subjects with non-white background, without data for serum creatinine, 
cystatin C, without applicable data for CKD or ESKD based on the ICD-10 code. We focused on non-Hispanic 
white subjects, who contributed to 94% of the UKB cohort, resulting in sample of 438,253 subjects for our final 
analysis. For the sensitivity analysis with longitudinal data set, we collected the second time repeated measure-
ments of date of attending assessment center, which includes kidney-related phenotypes such as serum creatinine, 
cystatin C, ICD-10 code for CKD or ESKD.

Definition of clinical outcome and exposures
CKD was considered the main outcome, and we defined CKD as the presence of one or more of the following 
conditions in the baseline or second stage cohort of the UKB database: 1) estimated glomerular filtration rate 
(eGFR) < 60 mL/min/1.73 m2 by creatinine (field 30,700) or cystatin C (field 30,720) based on the CKD Epidemi-
ology Collaboration (CKD-EPI) equation; 2) a diagnostic code for CKD stage 3–5 (N18.3–N18.5) or end-stage 
kidney disease (ESKD) (N18.6, Z94.0) based on the International Classification of Disease 10th revision (ICD-10) 
code (field 41,270); or 3) a record of ESKD diagnosis (field 42,026 or 42,027).

As the main exposure, uric acid was used as a continuous and categorical variable, defining hyperuricemia 
as urate levels > 420 μmol/L in males and > 360 μmol/L in females.

Genotyping, quality control, and imputation
Among the 502,413 subjects in the UKB, 50,000 were genotyped using the UK Biobank Lung Exome Variant 
Evaluation (UK BiLEVE) Axiom Array by Affymetrix and the remaining subjects were genotyped using the UK 
Biobank Axiom Array. Pre-phasing was carried out with SHAPEIT324 with 1000 Genome phase 3,25 and imputa-
tion of untyped single nucleotide polymorphisms (SNPs) was performed with IMPUTE4 (https://​jmarc​hini.​org/​
softw​are/)26 using UK10K, 1000 Genome phase 3, and the HRC panel,27 resulting in 93,095,623 autosomal SNPs. 
The imputed dataset was downloaded and quality control was performed. SNPs were filtered out if the missing 
genotype rates were ≥ 0.01, Hardy–Weinberg Equilibrium P values were < 10−6, or minor allele frequencies (MAF) 
were < 0.01. Subjects were excluded if the they were not from a White background. The detailed procedure is 
illustrated in Fig. 1. All data management was performed using PLINK,28 PLINK2,29 GCTA,30 and ONETOOL31.

GWAS and heritability analyses
We estimated SNP heritability and genetic correlations using linkage disequilibrium (LD) score regression32. LD 
score regression requires summary statistics from GWASs, and GWASs were conducted with the UKB dataset 
using logistic regressions for CKD and hyperuricemia after adjusting for the effects of baseline age, sex, and ten 
principal components (PC) corresponding to the top 10 largest eigenvalues.

PRS calculation and its evaluation
PRS derivation requires GWAS summary statistics and we considered the following GWAS summary data which 
did not include UKB dataset among the published CKD Gen Consortium papers (https://​ckdgen.​imbi.​uni-​
freib​urg.​de/)33. Results from SNPs with MAF ≥ 0.005 were utilized for PRS. PRSs were calculated with clump-
ing + thresholding (CT),34 LDpred with infinitesimal, grid and auto models,35,36 lassosum,37 and PRS continuous 
shrinkage (CS)38. For CT, we set the clumping at P = 10–5 and pruning at r2 = 0.2. For the LDpred grid model, 
the proportions of causal variants ρ were set at 0.03, 0.01, 0.3, 0.1, and 1. A 1000 Genomes Phase 3 European 
subpopulation was used as the linkage disequilibrium (LD) reference panel. For the other hyperparameters, we 
used the default values. To examine the prevalence of CKD as an increase in PRS, the calculated PRSs for CKD 
were categorized into deciles. In addition, for logistic regression, we re-defined PRS groups as tertile ranges, and 
2nd tertile range was regarded as a reference in the logistic regression model for evaluating the effect of PRS on 
prevalent CKD.

To validate the PRS performance, we separated the UKB into two datasets of a white background group to 
validate and test the data. For validation and testing, we used 47,611 subjects genotyped using the UK BiLEVE 
array chip, and 390,642 subjects genotyped using the Axiom chip. Validation data was used to fit the logistic 
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regression of PRS on CKD after adjusting for baseline age, sex, PRS, and PC 1–10 on CKD outcome. Akaike 
information criterion (AIC) was used to choose the best PRS method.

The PRS significance was evaluated by applying logistic regression to the test data. We included baseline 
age, sex, eGFR, body mass index (BMI), smoking status, physical activity, comorbidities (type 2 diabetes mel-
litus [T2DM], hypertension [HTN], cardiovascular diseases [CVD]), hemoglobin, glucose, albumin, calcium, 
cholesterol and PC 1–10 as covariates. We also conducted survival analyses using the test data. The age at CKD 
onset was considered the main outcome, and the same covariates as in the logistic regression were used. Survival 
analyses were conducted using the survival package39 (version 3.4.0) and ggsurvfit package40 (version 0.2.0) of 
R (version 4.5.0).

PRS analysis results for different models are shown in Supplementary Table S1. Among SNPs with GWAS 
results from Wuttke et al.33, genotypes for 3,898,527 SNPs were observed in UKB, and they were used for PRS 
analyses. LDpred grid1 (P = 0.03) had the best performance (P = 1.18 × 10–43 and of model AIC = 25,199.84), and 
was used for subsequent analysis.

Statistical analysis
The baseline characteristics of subjects with and without hyperuricemia were compared using the Student’s t-test 
and the chi-square test. Logistic regression analysis was used to evaluate the association between hyperuricemia 
and CKD, adjusting for covariates such as age, sex, BMI, smoking status, comorbidities (HTN, T2DM, and 
CVD), physical activity, blood laboratory findings (hemoglobin, glucose, albumin, calcium, and cholesterol), 
PRS, and PC 1–10. Adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated 
for incident CKD outcomes based on the PRSs. To rigorously investigate the interaction between hyperurice-
mia and PRS for CKD, we incorporated an interaction term as a covariate in the logistic regression analysis. 
In addition, we categorized the participants into six groups for analysis based on the tertile range of PRS and 
hyperuricemia status: PRS for CKD 1st tertile & hyperuricemia (−), PRS for CKD 1st tertile & hyperuricemia 
(+), PRS for CKD 2nd tertile & hyperuricemia (−), PRS for CKD 2nd tertile & hyperuricemia (+), PRS for CKD 
3rd tertile & hyperuricemia (−), and PRS for CKD 3rd tertile & hyperuricemia (+). The group PRS for CKD 1st 
tertile & hyperuricemia (−) was used as the reference. Furthermore, we assessed the impact of hyperuricemia 
on CKD development based on sex (male and female), baseline age (age < 60 and age ≥ 60), and T2DM (control 
and T2DM).

We performed Kaplan–Meier survival analysis to access the risk of CKD development among subjects without 
underlying CKD who were sequentially followed up in the UKB database. We used hyperuricemia status and 
PRS grade as independent variables, and the newly diagnosed CKD as the outcome. All analyses were performed 
using R software, version 3.6.3 (R Foundation) and Rex. All Two-sided P values were two-sided reported, and 
P < 0.05 was considered to indicate statistical significance41.

Ethical considerations
This study was performed in accordance with the principles of the Declaration of Helsinki and approved by the 
Institutional Review Board of Seoul National University Boramae Medical Center (IRB No. 07-2022-45). The 
usage of the UK Biobank data was approved by the UK Biobank consortium (application No. 53799). Acquisi-
tion of informed consent was not required, as the study investigated anonymous public databases and genetic 
summary statistics.

Figure 1.   Flow diagram of the study from clinical phenotype and genotype data.
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Results
Study populations
A total of 438,253 subjects with available clinical data were included in the study, of which 28,970 (6.6%) had 
CKD and 57,656 (13.2%) had hyperuricemia. Subjects with hyperuricemia were more likely to be male, older, 
have a higher BMI, and more likely to have HTN, T2DM, and CVD (Table 1). In addition, subjects with hyper-
uricemia showed a lower eGFR and a higher incidence of CKD, greater albuminuria, higher serum glucose, 
lower high-density lipoprotein cholesterol, higher low-density lipoprotein cholesterol, and higher triglyceride 
levels (Table 1).

Heritability analyses and genetic correlation
The estimated heritability from the summary statistics of GWAS on CKD and hyperuricemia were 0.0292 
(SE = 0.0021, P = 5.93 × 10–44) and 0.0709 (SE = 0.009, P = 3.33 × 10–15), respectively. Their genetic correlation was 
0.5076 (SE = 0.0505, P = 9.55 × 10–24).

Association between PRSs and the risk of CKD
The prevalence of CKD increased from 1645 (4.23%) to 3624 (9.28%) between the 1st decile and the 10th decile 
(Supplementary Table S2). Different PRS densities in subjects with and without CKD are shown in Supplemen-
tary Figure S1.

According to the PRSs, subjects within the 1st tertile of PRSs showed a significantly decreased risk of the 
development of CKD (OR 0.78), and it was maintained after adjustment of covariates (aOR 0.93, 95% CI 
0.89–0.97). On the contrary, subjects within the 3rd tertile showed a significantly increased risk for the develop-
ment of CKD (OR 1.31), and it was also maintained after adjustment of covariates (aOR 1.12, 95% CI 1.08–1.17) 
(Table 2).

In the stratified analysis using the tertile ranges of PRS, there was a decreased risk of CKD in the 1st tertile of 
PRS and an increased risk of CKD in the 3rd tertile of PRS in females and in subjects without T2DM. The impact 
of PRS was significant irrespective of age groups stratified by a cut-off age of 60 years (Supplementary Table S3).

Table 1.   Baseline characteristics. SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; eGFR, estimated glomerular filtration rates.

Total (n = 438,253) Hyperuricemia (−) (n = 380,597) Hyperuricemia (+) (n = 57,656) Statistic P-value

Age, mean (SD) 56.8 (8.0) 56.5 (8.1) 58.2 (7.7) − 48.13 < 0.001

Male, n (%) 200,531 (45.8) 165,280 (43.4) 35,251 (61.1) 6329.27 < 0.001

Body mass index, mean (SD) 27.39 (4.8) 26.9 (4.5) 30.6 (5.2) − 161.92 < 0.001

< 18.5 kg/m2 1249 (0.3) 1223 (0.3) 26 (0.1) 26,224.53 < 0.001

18.5–25 kg/m2 143,992 (33.0) 138,103 (36.4) 5889 (10.3)

25–30 kg/m2 186,102 (42.6) 162,235 (42.8) 23,867 (41.6)

≥ 30 kg/m2 105,503 (24.2) 77,870 (20.5) 27,633 (48.1)

Physical Activity 3.4 (2.5) 3.4 (2.5) 3.2 (2.5) 23.12 < 0.001

Smoking status

Current smoker, n (%) 45,641 (10.5) 40,296 (10.6) 5345 (9.3) 1975.76 < 0.001

Ex-smoker, n (%) 155,503 (35.6) 130,311 (34.4) 25,192 (43.9)

Non-smoker, n (%) 235,548 (53.9) 208,676 (55.0) 26,872 (46.8)

Comorbidities

Hypertension 229,343 (52.7) 188,546 (49.9) 40,797 (71.2) 9009.05 < 0.001

Diabetes 30,127 (7.2) 23,087 (6.4) 7040 (12.8) 2981.76 < 0.001

Cardiovascular disease 45,169 (12.5) 35,504 (11.4) 9665 (19.6) 2623.00 < 0.001

Chronic kidney disease 28,970 (6.6) 18,861 (5.0) 10,109 (17.5) 12,829.03 < 0.001

Laboratory results

Hemoglobin, g/dL 14.2 (1.2) 14.1 (1.2) 14.5 (1.2) − 70.52 < 0.001

Calcium, mmol/L 2.4 (0.1) 2.4 (0.1) 2.4 (0.1) − 45.50 < 0.001

Albumin, g/L 45.2 (2.6) 45.2 (2.6) 45.3 (2.7) − 7.15 < 0.001

Glucose, mmol/L 5.1 (1.2) 5.1 (1.2) 5.3 (1.2) − 32.09 < 0.001

Cholesterol, mmol/L 5.7 (1.1) 5.7 (1.1) 5.7 (1.2) − 0.75 0.454

Uric acid, μmol/L 309.1 (80.4) 289.1 (62.9) 441.2 (54.0) − 615.68  < 0.001

Creatinine based eGFR, mL/min/1.73 
m2 94.3 (11.2) 95.3 (10.3) 87.6 (14.5) 123.44  < 0.001

Cystatin C based eGFR, mL/min/1.73 
m2 90.8 (12.8) 92.1 (11.7) 82.5 (16.1) 136.96  < 0.001

chip = Axiom 390,642 (89.1) 340,093 (89.4) 50,549 (87.7) 146.52  < 0.001

chip = UK BiLEVE 47,611 (10.9) 40,504 (10.6) 7107 (12.3)



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18466  | https://doi.org/10.1038/s41598-024-69420-5

www.nature.com/scientificreports/

Association between hyperuricemia and prevalent CKD
As a continuous variable, high uric acid levels increased the risk of CKD (Fig. 2). The presence of hyperuricemia 
(aOR 1.55, 95% CI 1.48–1.61) and higher PRS (aOR 1.12, 95% CI 1.09–1.14) increased risk of CKD, respectively. 
Additionally, there were a significant negative interaction between hyperuricemia and PRS for CKD (Table 3).

To enhance intuitive comprehension, we conducted an integrated grouping analysis based on the PRS for CKD 
and the presence of hyperuricemia. Compared to subjects within the 1st tertile of PRS without hyperuricemia, 
there was a trend of increasing risk of CKD in subjects within the 2nd and 3rd tertile of PRS; additionally, the 
risk of CKD was particularly prominent among the subjects with hyperuricemia (Fig. 3).

Table 2.   Impact of PRS on the risk of CKD. Model 1. Non-adjusted. Model 2. Adjusted with age, sex, body 
mass index, smoking status, comorbidities (hypertension, diabetes, cardiovascular disease), physical activity, 
laboratory findings (hemoglobin, serum glucose, albumin, calcium, cholesterol, estimated glomerular filtration 
rate), hyperuricemia, PC1 ~ 10. CKD, chronic kidney disease; PRS, polygenic risk score; OR, odds ratio; aOR, 
adjusted odds ratio; CI, confidence interval.

Group

Model 1 Model 2

OR (95% CI) P-value aOR (95% CI) P-value

PRS 1st tertile 0.78 (0.76, 0.81) < 0.001 0.93 (0.89, 0.97) < 0.001

PRS 2nd tertile Reference Reference

PRS 3rd tertile 1.31 (1.27, 1.35) < 0.001 1.12 (1.08, 1.17) < 0.001

Figure 2.   Spline curve for the risk of CKD based on the level of uric acid. Multivariable logistic regression 
included covariates including age, sex, body mass index, smoking status, comorbidities (hypertension, diabetes, 
cardiovascular disease), physical activity, laboratory findings (hemoglobin, serum glucose, albumin, calcium, 
cholesterol, estimated glomerular filtration rate), PC1 ~ 10, PRS for CKD, interaction between urate and PRS for 
CKD. CKD, chronic kidney disease.

Table 3.   Significance of hyperuricemia, PRS for CKD, and their interaction for the risk of CKD. Adjusted 
variables: age, sex, body mass index, smoking status, comorbidities (hypertension, diabetes, cardiovascular 
disease), physical activity, laboratory findings (hemoglobin, serum glucose, albumin, calcium, cholesterol, 
estimated glomerular filtration rate), hyperuricemia, PRS for CKD, PC1 ~ 10, interaction between 
hyperuricemia and PRS for CKD. CKD, chronic kidney disease; PRS, polygenic risk score; aOR, adjusted odds 
ratio; CI, confidence interval. *Interaction between hyperuricemia and PRS for CKD.

Hyperuricemia PRS for CKD *Interaction

β aOR (95% CI) P-value β aOR (95% CI) P-value β aOR (95% CI) P-value

Whole populations 0.44 1.55 (1.48, 1.61) < 0.001 0.11 1.12 (1.09, 1.14) < 0.001 − 0.05 0.95 (0.92, 0.99) 0.016
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In the stratified analysis based on sex, the significance of hyperuricemia was higher in females (aOR 1.88, 95% 
CI 1.69–2.08) than males (aOR 1.29, 95% CI 1.17–1.42) after adjustment for CKD. In addition, the significance of 
hyperuricemia in CKD was maintained irrespective of age and the presence of T2DM (Supplementary Table S4).

Risk of the development of CKD
A total of 14,699 subjects with follow-up data were included in the survival analysis. During the 51.9 ± 11.0 months 
of follow-up period, 114 patients (0.8%) were newly diagnosed with CKD. According to the PRS grade, 34 (0.7%), 
27 (0.6%), and 53 (1.1%) patients had newly developed CKD in the 1st tertile, 2nd tertile, and 3rd tertile of the 
PRS grade, respectively. The different baseline characteristics according to PRS grades are shown in Supplemen-
tary Table S5. Except for kidney function-related indicators, there were no significant differences in character-
istics according to PRS grade. In the survival analysis for CKD development according to the tertile grades of 
PRS, subjects within the 3rd tertile of PRS showed the highest risk of incident CKD (Supplementary Figure S2).

A total of 2382 (16.2%) patients had hyperuricemia. Participants with hyperuricemia were older, had a higher 
prevalence of obesity, and engaged in less physical activity. Although there were statistically significant differ-
ences in laboratory results between the two groups, these differences were found to be subtle (Supplementary 
Table S6). Hyperuricemia also significantly increased the risk of developing CKD (Supplementary Figure S3).

Discussion
As a significant modifiable risk factor, we investigated the effect of hyperuricemia on the development of CKD, 
adding to the genetic risk of CKD, which was estimated based on the PRS. PRSs for CKD were significantly 
associated with the presence and development of CKD. Considering these genetic risk factors for CKD with 
PRSs, hyperuricemia was found to play a major role in both the development and presence of CKD. Regardless 
of the genetic risk of CKD, hyperuricemia may be a significant factor that needs to be managed.

CKD involves complex disease entities including genetic and environmental factors. Significant progress 
has been made in human genetics in recent decades, leading to improvements in high-throughput genotyp-
ing, sequencing technologies, statistical genetics, and bioinformatics. Currently, 600 genes are implicated in 
monogenic kidney diseases, and GWASs have suggested that hundreds of genes contribute to complex kidney 
diseases33,42–44. The development of GWASs with large-scale population-based data significantly facilitates the risk 
stratification of CKD using PRS. In this study, we also found that the PRS for CKD showed a positive association 
with the risk of CKD, even after adjusting for well-known risk factors.

Uric acid is usually generated in the liver and intestine as a byproduct of the purine metabolic pathway, and 
the kidney has responsible for excreting two-thirds of the uric acid45. Although uric acids have a potent role 
as an antioxidant that can neutralize superoxide, hydroxyl radicals, and singlet oxygen,46 it has been widely 
accepted that hyperuricemia with hyperuricosuria causes kidney disease by depositing intraluminal crystal in 
the collecting duct of the nephron, similar to how gout does with the joints47,48. In addition, epidemiological 
studies have demonstrated that higher levels of uric acid are significantly related to an increased risk of CKD4,49,50. 
Nevertheless, the causal relationship between hyperuricemia and CKD is not clearly understood because of the 
bidirectional effects between uric acid and kidney function and the abundance of confounding factors.

Similar to attempts to determine the genetic effect on CKD, GWASs have uncovered roughly 30 loci that 
regulate serum uric acid, including uric acid transporters and regulatory transporter-associated proteins51,52. 
Moreover, among 50 loci associated with eGFR and CKD, nine were identified that are commonly associated 
with serum uric acid concentration53. Although a causal relationship between hyperuricemia and CKD has not 

Figure 3.   Effect of hyperuricemia on CKD according to the PRS group. PRS group was divided into tertile 
ranges, and subjects included 1st terile of PRS without hyperuricemia was regarded as a reference group. The 
X-axis represents the adjusted odds ratio, and the covariates are as follows. Multivariable logistic regression 
included covariates including age, sex, body mass index, smoking status, comorbidities (hypertension, diabetes, 
cardiovascular disease), physical activity, laboratory findings (hemoglobin, serum glucose, albumin, calcium, 
cholesterol, estimated glomerular filtration rate), PC1 ~ 10. CKD, chronic kidney disease; PRS, polygenic risk 
score.
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been established yet, we found that there is a relative genetic correlation between CKD and hyperuricemia in 
this study. Nevertheless, the relationship between uric acid and CKD cannot be easily understood because of 
the uncontrollable and complex pathway that involves genetic factors related to the regulation of uric acid levels 
and such target diseases, as well as environmental and/or dietary factors. Therefore, using the PRS for CKD, 
we evaluated the additional impact of hyperuricemia on CKD. Finally, we found that hyperuricemia played a 
significant role in increasing the risk of CKD, regardless of the genetic risk score for CKD.

Our findings demonstrate that the effect of hyperuricemia on CKD supports those of previously reported ran-
domized clinical trials demonstrating the efficacy of uric acid-lowering agents in preserving kidney function18–20. 
Recent research involving advanced CKD patients with a high risk of progression found no statistically significant 
differences between allopurinol and the control group regarding eGFR decline54. Another clinical trial using 
febuxostat also showed an insignificant effect on preserving kidney function in advanced CKD patients55. These 
findings may be related to an attenuation of the effectiveness of pharmacological management due to confound-
ing factors that expand as CKD progresses. Despite the negative results of pharmacological interventions for 
uric acid control, it is undeniable that uric acid plays a crucial role as a marker, correlate, or representative of 
metabolic syndrome, cardiovascular disease, and CKD. Our findings, along with those of other studies, indicate 
that uric acid may be a useful prognostic marker in clinical practice.

This study demonstrates that hyperuricemia has a significant impact on CKD, even after considering the 
genetic risk score for CKD. We calculated the PRS based on large-population cohort data and validated these 
scores using an independent data set. However, this study has several limitations. Firstly, while our analysis dem-
onstrates that PRS significantly impact CKD development, the ability to predict individual disease risk based on 
PRS alone is limited. This is because CKD is influenced by a multitude of factors beyond genetic predisposition. 
Although we adjusted for certain clinical variables to focus on the pure genetic effect, our study does not fully 
capture the complexity of CKD etiology, including various environmental and lifestyle factors, which are known 
to contribute to CKD risk. Ancestry is the parameter that varies the most when calculating the PRS; therefore, 
it should be a requirement that individuals of the same ancestry be treated as a single population group when 
calculating scores. In this regard, we included only non-Hispanic whites and the results could not be adjusted 
for overall ancestry.

Although we performed survival analysis in subpopulations with follow-up data, we could not conduct a Cox 
proportional hazard analysis that considers various covariates due to the insufficient number of subjects and the 
limited duration of follow-up. We used the UKB data, which consists of healthy general populations, therefore, 
healthy volunteer bias should be considered. Despite the genetic correlation between hyperuricemia and CKD, 
we could not consider share effects in the PRS analysis. Lastly, we could not evaluate medication history, includ-
ing the use of uric acid lowering agents. To generalize the findings, further research that restricts the analysis 
to other ethnic populations and considers more comprehensive factors, including drug implications, is needed. 
Furthermore, given the significant interaction between hyperuricemia and PRS on CKD risk, identifying dietary, 
life-style, environmental, and genetic risks of hyperuricemia, which are not included in the CKD PRS, may be 
beneficial for CKD prevention and treatment.

This study demonstrates that hyperuricemia is a significant risk factor representing the risk of CKD, even after 
considering the genetic risk score for CKD. Monitoring and managing uric acid levels are warranted, especially 
in patients with a potential risk for CKD, regardless of genetic risk.

Data availability
All data used in the present study were provided by the UK biobank and could be downloaded at https://​www.​
ukbio​bank.​ac.​uk.
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