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ABSTRACT
ISS
BACKGROUND Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable

accuracy and may result in excessive health care costs.

OBJECTIVES This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed

tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular

morphologymeasures (AI-QCTISCHEMIA) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE).

METHODS A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of

Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon

Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of

Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic

patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography

angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive

coronary angiography in conjunction with invasive FFR measurements. The AI-QCTISCHEMIA model was developed in the

derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR #0.80) was

evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1.

RESULTS In CREDENCE validation (n ¼ 305, age 64.4 � 9.8 years, 210 [69%] male), the diagnostic performance by

area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for

AI-QCTISCHEMIA, 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In

PACIFIC-1 (n ¼ 208, age 58.1 � 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCTISCHEMIA,

0.78 (95% CI: 0.72-0.84; P ¼ 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P ¼ 0.262) for PET, and 0.72 (95% CI:

0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a

positive AI-QCTISCHEMIA test was associated with aHR: 7.6 (95% CI: 1.2-47.0; P ¼ 0.030) for MACE.

CONCLUSIONS This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and

vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust

prognostic utility for MACE beyond presence of stenosis. (JACC Cardiovasc Imaging 2024;17:894–906) © 2024 The

Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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AB BR EV I A T I O N S

AND ACRONYM S

AI-QCT = artificial

intelligence–guided coronary

computed tomography

angiography

AI-QCTISCHEMIA = ischemia

model from AI-QCT

ASCVD = atherosclerotic

cardiovascular disease

AUC = area under the receiving

operating curve

CAD = coronary artery disease

CTA = computed tomography

angiography

FFR = fractional flow reserve

FFRCT = fractional flow reserve

from coronary computed

tomography angiography

MACE = major adverse

cardiovascular events

MPI = myocardial perfusion

imaging

PET = [15O]H2O position

emission tomography

SPECT = 99mTc-tetrofosmin

single photon emission

computed tomography
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N oninvasive functional testing strategies,
such as nuclear myocardial perfusion imag-
ing using positron emission tomography

(PET) or single-photon emission computed tomogra-
phy (SPECT) have been the cornerstone for the nonin-
vasive detection of myocardial ischemia.1-4 In the
United States, SPECT imaging alone—as the dominant
approach to coronary artery disease (CAD) imaging—
may result in health care costs estimated at up to $2
billion and leads to a significant radiation burden.5,6

In the United States and European guidelines, coro-
nary computed tomography angiography (CTA)
received a Class I indication for the use as a first-
line test in patients with chest pain.7-9 Atherosclerotic
burden on coronary CTA is a strong and independent
prognosticator of future cardiovascular events irre-
spective of the presence and extent of coronary
ischemia.10,11 Nevertheless, in daily clinical practice,
the wealth of information provided by coronary CTA
is not fully exploited because of time-consuming
and labor-intensive nature of—as well as the interob-
server variability observed with—a quantitative
analysis.

Artificial intelligence–guided analysis of quantita-
tive computed tomography (AI-QCT) has shown high
diagnostic accuracy and enables rapid and objective
quantitative assessment of adverse plaque charac-
teristics including total plaque volume, plaque
morphology, vessel volume, vessel involvement, and
stenosis to guide risk stratification and therapy.12-14

As atherosclerosis and vascular morphology form the
cause for coronary ischemia, an important unan-
swered question remains: Could assessment of
anatomic atherosclerosis, stenosis, and vascular
morphology features accurately determine functional
coronary ischemia? This substudy of the CREDENCE
(Computed Tomographic Evaluation of Atheroscle-
rotic Determinants of Myocardial Ischemia;
NCT02173275) and PACIFIC-1 (Comparison of Coro-
nary CT Angiography, SPECT, PET, and Hybrid
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Imaging for Diagnosis of Ischemic Heart Dis-
ease Determined by Fractional Flow Reserve;
NCT01521468) trials1,15 investigated the
diagnostic performance and prognostic
utility of a newly developed ischemia model
(AI-QCTISCHEMIA) as first-line detection tool
for coronary ischemia.

METHODS

STUDY POPULATION. The current study is a
post hoc analysis of the CREDENCE study
(n ¼ 612) and the PACIFIC-1 study
(n ¼ 208).1,15 CREDENCE included patients
without known CAD scheduled to undergo
clinically indicated nonemergent invasive
coronary angiography (ICA), and patients
were prospectively split in a derivation
(n ¼ 307) and a validation cohort (n ¼ 305)
based on inclusion date. Patients underwent
coronary CTA and myocardial perfusion im-
aging (MPI)—SPECT, PET, or cardiac magnetic
resonance (CMR)—and ICA with fractional
flow reserve (FFR) measurements. PACIFIC-1
included patients without known CAD with
an intermediate pretest likelihood and
normal left ventricular ejection fraction, and

all patients underwent coronary CTA, ICA with 3-
vessel FFR, 99mTc-tetrofosmin SPECT, and [15O]H2O
PET. Full inclusion and exclusion criteria, study
design, as well as imaging techniques of both studies
have been published previously.1,15 Both studies were
approved by the local ethics committee, with all pa-
tients visiting the study sites providing informed
consent, and complied with the Declaration of
Helsinki.

CORONARY CTA ACQUISITION. All coronary CTA
scans were performed using single- or dual source
computed tomography (CT) scanners with $64 de-
tector rows (CREDENCE) or using a 256 detector row
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CT scanner (PACIFIC-1) (Philips Brilliance iCT, Philips
Healthcare) in accordance with the SCCT (Society of
Cardiovascular Computed Tomography) guidelines,
as described previously.1,15-17

AI-QCTISCHEMIA FROM CORONARY CTA. Coronary CTA
scans from both studies were analyzed using the
previously described AI-QCT algorithm.12,14 The
quantitative coronary CTA evaluation was performed
blinded to the clinical and outcome data. This Food
and Drug Administration (FDA)-cleared software uses
a series of validated convolutional neural networks
(3-dimensional U-Net and Visual Geometry Group
[VGG] network variants) for image-quality assess-
ment, coronary segmentation and labeling, lumen-
wall evaluation and vessel contour determination,
and plaque characterization. The quantitative output
of the AI-QCT algorithm includes the presence or
absence of features of stenosis parameters such as
percent diameter stenosis and area stenosis, number
of severe stenosis >70%, and number of moderate
stenosis 50% to 70%; atherosclerosis measurements
such as noncalcified plaque volume, total plaque
volume, and lesion length; vascular morphology fea-
tures such as total vessel volume, total lumen vol-
ume, and vessel length; and diffuseness of
atherosclerosis that includes a calculation of the sum
of volumes and lengths across all involved segments.

Using these parameters, a model predicting
ischemia was developed in the 307 patients in the
derivation cohort of CREDENCE to predict a binary
presence of ischemia defined as an invasive
FFR #0.80 on a per-vessel basis. The model was
developed using only the test results and invasive
FFR measurements from the CREDENCE derivation
cohort, blinded to the clinical, diagnostic, and
outcome data. First, vessels with AI-QCT–determined
stenosis #20% were automatically considered non-
ischemic, vessels with AI-QCT–determined stenosis
>80% were automatically considered ischemic. For
the remaining vessels, a model predicting invasive
FFR #0.80 was developed using 37 parameters from
the AI-QCT algorithm.18 Different machine-learning
methods were tested for development of the model
(logistic regression, random forest, extreme gradient
boosting, and light gradient boosting), of which
random forest achieved the most optimal internal
performance in the derivation cohort (Supplemental
Table 1). The final random forest model was con-
structed with hyperparameter tuning achieved via 10
repeated stratified 5-fold cross-validation. Bayesian
hyperparameter optimization was used to maximize
the average performance over the test sets across all
random splits and folds.19 The final model consisted
of more than 1,000 decision trees, with a maximal
depth of 7 layers in each tree. The AI-QCTISCHEMIA

threshold was determined to maximize the sum of
sensitivity and specificity, with the constraint that
vessel-territory–level specificity had to be above
0.80, resulting in a threshold of 0.31: ie, the proba-
bilities from the AI-QCTISCHEMIA random forest model
were considered abnormal if $0.31. To determine the
importance of the parameters used for prediction of
ischemia in CREDENCE and PACIFIC-1, the top 5 ab-
solute parameter importances were extracted per
vessel. The sum of the absolute per-vessel impor-
tance was used to determine the overall importance
per parameter. The importances were scaled from 0 to
1 to calculate relative importance and graphically
displayed using the R package ggplot2.

FFRCT FROM CORONARY CTA. FFRCT measurements
from coronary CTA scans were acquired as described
earlier (HeartFlow [HeartFlow Holding, Inc] FFRCT

version 2.7), in a blinded fashion.1,16 Uninterpretable
cases were rejected after an image-quality check by
HeartFlow. In CREDENCE, FFRCT was measured at the
most distal point in the segment with the maximal
diameter stenosis. Vessels with #25% stenosis were
considered normal. In PACIFIC-1, FFRCT values were
extracted from the same position as the FFR wire,
which was generally in the distal part of the vessel per
PACIFIC-1 study protocol. For totally occluded coro-
nary arteries, a value of 0.50 was assigned. For both
studies, an FFRCT #0.80 was considered abnormal.

MPI ACQUISITION AND INTERPRETATION. In CREDENCE,
MPI was performed using SPECT in 364 patients, us-
ing 99mTc and 201Thallium/99mTc in 361, and 3 pa-
tients, respectively. A total of 42 patients underwent
PET, using 82Rubidium and 13N-Ammonia in 35 and 13
patients, respectively. CMR was performed in 100
patients, predominantly using an adenosine stress
protocol (n ¼ 96). SPECT and PET MPIs were scored
according to the 17-segment American Heart Associ-
ation (AHA)/American College of Cardiology (ACC)
model and summed stress scores (SSSs) were calcu-
lated per vessel territory. CMR imaging assessed rest
and stress perfusion images according to 16
(excluding apex) of the 17-segment AHA/ACC model
and graded as normal (0) and abnormal (1). Segmental
scores were summed to per-vascular territory ac-
cording to the standard segmentation. An SSS $1 was
graded as abnormal.

In PACIFIC-1, patients underwent PET with 370
MBq of [15O]H2O during resting and adenosine-
induced (140 mg/kg/min) hyperemic conditions.

https://doi.org/10.1016/j.jcmg.2024.01.007
https://doi.org/10.1016/j.jcmg.2024.01.007
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Hyperemic myocardial blood flow (MBF) was calcu-
lated for all 3 major vascular territories. A hyperemic
MBF #2.30 mL/min/g was considered abnormal.
Furthermore, patients underwent SPECT with a 2-day
stress-rest protocol with intravenous adenosine
(140 mg/kg/min) for hyperemia and 370 to 550 MBq
99mTc-tetrofosmin as radiotracer. Summed difference
scores (SDSs) were calculated from the 17-segment
AHA/ACC model to account for vessel territory. An
SDS $2 was considered abnormal.

INVASIVE CORONARY ANGIOGRAPHY AND FFR.

In CREDENCE, ICA was performed in agreement with
clinical indications and local standards. The major
coronary arteries and side branches $2.0 mm with
>40% or #90% lumen diameter stenosis underwent
FFR measurement distal to the stenosis during
intracoronary or intravenous adenosine infusion.
Images were transferred to a blinded core laboratory
for performance of quantitative coronary angiog-
raphy and FFR reliability. In PACIFIC-1, ICA was
performed following a standardized protocol with at
least 2 orthogonal imaging directions per evaluated
segment. Epicardial coronary vasodilation was
induced using 0.2 mL of intracoronary nitroglycerin.
Per PACIFIC-1 protocol, FFR measurements were
performed in all 3 major coronary arteries in the distal
part of the vessel, regardless of severity of stenosis,
except for occluded or subtotally occluded (>90%)
lesions. Intracoronary (150 mg) or intravenous (140 mg/
kg/min) adenosine infusion was used to induce
maximal coronary artery hyperemia. All images and
FFR signals were interpreted by experienced inter-
ventional cardiologists blinded to the noninvasive
imaging results. In both studies, FFR was calculated
as the ratio of the mean distal intracoronary and the
mean aortic pressure.

PACIFIC-1 PATIENT FOLLOW-UP. Follow-up data
were collected during 2021 and 2022 using national
registry databases, electronic medical records, and
standardized telephone interviews,20,21 between
January and October 2022. Follow-up data were
available in 204 of 208 patients (98%); 4 patients did
not have follow-up available. Events were adjudi-
cated in accordance with current guidelines.8,21 For
the follow-up analysis, the primary composite
outcome was defined as all-cause mortality, nonfatal
myocardial infarction, nonfatal stroke, and coronary
revascularization (percutaneous coronary interven-
tion or coronary artery bypass graft surgery). Early
revascularization within 4 months as a consequence
of the initial noninvasive imaging was excluded from
this composite outcome.
STATISTICAL ANALYSIS. To assess the external per-
formance of the AI-QCTISCHEMIA algorithm, the per-
formance of the different diagnostic modalities in the
CREDENCE temporal validation cohort and the PA-
CIFIC external validation cohort was reported,
whereas internal validation in the CREDENCE deri-
vation cohort was not reported. Vessels with missing
invasive FFR values were excluded from the analysis.
After exclusion of these vessels, the primary analysis
was performed considering all missing test results
positive (intention-to-diagnose). A secondary anal-
ysis was performed using multiple imputation of
missing diagnostic test results. Finally, a tertiary
analysis was performed excluding missing diagnostic
results from the analysis.

All analyses were performed both on a per-patient
as well as a per-vessel or vessel-territory basis. For
the per-patient analysis, the most positive value for
the particular diagnostic modality of the 3 vessels was
used. The diagnostic performance (sensitivity, speci-
ficity, negative predictive value [NPV], positive pre-
dictive value [PPV] and accuracy) of the different
ischemia modalities (AI-QCTISCHEMIA, FFRCT, and
MPI) for the test-specific thresholds was compared
with an invasive FFR reference standard (FFR #0.80).
For the area under the receiver-operating character-
istic curve (AUC) analysis, the continuous diagnostic
results were used. AUCs were compared with AI-QCT
in a pairwise fashion, using a DeLong test. For the
primary and tertiary analyses, sensitivity, specificity,
NPV, PPV, and diagnostic accuracy were reported as
simple frequencies as percentages with Wilson
95% CIs on a per-patient level and 2-sided boot-
strapped 95% CIs with cluster sampling on a per-
vessel level. AUCs were calculated using Mann-
Whitney statistic with bootstrapped 95% CIs. The
secondary analysis used multiple imputation to
address missing data. First, missing test values were
imputed in a data set with age, sex, body mass index,
and total calcified plaque volume. The imputation
was performed separately for the different diagnostic
modalities. Given the multicenter design, site loca-
tion was additionally used in the imputation model in
CREDENCE. A linear regression imputation model
was used to impute missing variables as continuous
values for AI-QCT, FFRCT, MPI, PET, and SPECT in the
AUC analysis, whereas a discriminant model was used
to impute missing variables as binary (positive/
negative) for the analysis of the diagnostic perfor-
mance measures with a binary threshold (sensitivity,
specificity, NPV, PPV, and accuracy). A total of 25
imputed data sets were created for each modality.
The resulting imputation data sets for the binary



TABLE 1 Patient Characteristics in CREDENCE and PACIFIC-1

CREDENCE Derivation
(n ¼ 307)

CREDENCE Validation
(n ¼ 305)

PACIFIC-1
(n ¼ 208)

Age, y 64.4 � 10.2 64.4 � 9.8 58.1 � 8.7

Male 218 (71) 210 (69) 132 (63)

Hypertension 197 (64) 197 (64) 96 (46)

Dyslipidemia 136 (44) 172 (56) 83 (40)

Diabetes mellitus type 2 95 (31) 91 (30) 33 (16)

Body mass index, kg/m3 26.3 � 4.2 26.3 � 4.4 26.9 � 3.7

Smoking history 148 (48) 144 (47) 99 (48)

Family history of CAD 60 (20) 60 (20) 107 (51)

Reason for referral

Typical angina 110 (36) 123 (40) 71 (34)

Atypical angina 49 (16) 73 (24) 80 (38)

Aspecific chest pain 41 (13) 33 (11) 57 (27)

Asymptomatic 107 (35) 76 (25) 0 (0)

Aspirin use 186 (61) 176 (58) 182 (88)

Beta-blocker use 79 (26) 82 (27) 135 (65)

Use of calcium antagonists 86 (28) 103 (34) 61 (29)

Statin use 171 (56) 186 (61) 162 (78)

Use of long-acting nitrates 25 (8) 24 (8) 22 (11)

Follow-up duration, y — — 8.5 (7.9-9.3)

Values are mean � SD, n (%), or median (IQR).

CAD ¼ coronary artery disease.
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diagnostic measures were reported using maximum
likelihood estimation on a per-patient level while
using a logistic regression model with generalized
estimating equations (GEEs) on a per-vessel level to
account for the multiple measures per patient. In
the secondary analysis, AUCs were calculated using
the Mann-Whitney statistic, whereas the 95% CIs
for the AUCs, as well as for the diagnostic mea-
sures, were calculated using the estimates of the SE
based on the between– and within–data sets
variability.

In the PACIFIC-1 follow-up analysis, MACE-free
survival was shown in a Kaplan-Meier analysis sepa-
rately for the different diagnostic modalities, after
which Cox regression models were constructed with
the binary test results (positive/negative) from AI-
QCTISCHEMIA, FFRCT, PET, and SPECT as independent
variables, respectively, and MACE as dependent var-
iable. For the prognostic analysis, the most positive
value for the particular diagnostic modality of the 3
vessels was used, whereas missing test values were
imputed using the same multiple imputation
approach as for the diagnostic analysis. Patients with
missing follow-up data were excluded (n ¼ 4). The
Cox regression models were adjusted for age, sex, and
cardiovascular risk as determined by the Systematic
Coronary Risk Evaluation 2 (SCORE2) risk score and
further for the presence of AI-QCT–determined
obstructive stenosis ($50%).

Data are presented as mean � SD for normally
distributed variables or median (IQR) for non-
normally distributed data. Categorical variables are
expressed as absolute numbers and percentages. The
Shapiro-Wilk test was used to check the normality of
the distribution. Per patient variables were compared
between FFR #0.80 and nonischemic FFR >0.80 pa-
tient groups using the chi-squared test for binary
variables, Wilcoxon Mann-Whitney U test for ordinal
and non-normally distributed continuous variables,
and the 2-sample Student’s t-test for normally
distributed continuous variables. Per-vessel variables
were compared using logistic GEE for binary vari-
ables, GEE based on rank order22 for ordinal and non-
normally distributed continuous variables, and
traditional GEE for normally distributed variables. All
statistical analyses were performed using RStudio
software version 4.0.3 (R Foundation) and SAS soft-
ware version 9.4 (SAS Institute Inc).

RESULTS

The 307 patients from the CREDENCE derivation
cohort used for development of the AI-QCTISCHEMIA

model had a mean age of 64.4 � 10.2 years, and 218
(71%) were male. The 305 patients from the
CREDENCE validation cohort had a mean age of 64.4 �
9.8 years, and 210 (69%) were male, whereas the 208
patients from PACIFIC-1 had a mean age of 58.1 � 8.7
years, with 132 (63%) male patients. Baseline charac-
teristics of the cohorts are shown in Table 1. Diagnostic
results for the different modalities for the CREDENCE
validation cohort and PACIFIC-1 are shown in Table 2
and Table 3, respectively. In CREDENCE, 845 (97.4%),
745 (85.8%), and 856 (98.6%) vessels were interpret-
able for AI-QCTISCHEMIA, FFRCT, and MPI, respectively
(Supplemental Table 2). In PACIFIC-1, 581 (94.9%),
505 (82.5%), 600 (98.0%), and 599 (97.9%) vessels
were interpretable for AI-QCTISCHEMIA, FFRCT, SPECT,
and PET, respectively.

AI-QCTISCHEMIA MODEL FEATURES AND IMPORTANCE.

The strongest contributors to the AI-QCTISCHEMIA

prediction model for vessel ischemia were percent
diameter stenosis, percent area stenosis, number of
severe stenosis, and minimal lumen diameter in
both CREDENCE and PACIFIC-1 (Figure 1). Albeit
with less importance, this list comprising the top 5
predictors per vessel also included several plaque-
burden parameters beyond the number of stenosis,
such as total plaque volume and percent atheroma
volume.

https://doi.org/10.1016/j.jcmg.2024.01.007


TABLE 2 Per-Vessel Territory Parameters for Coronary CTA, FFRCT, and MPI in CREDENCE

Overall
(N ¼ 868)

FFR #0.80
(n ¼ 229)

FFR >0.80
(n ¼ 639) P Value

AI-QCT

Maximum diameter stenosis <0.001

0% 16 (1.8) 0 (0.0) 16 (2.5)

1%-29% 350 (40.3) 17 (7.4) 333 (52.1)

30%-49% 236 (27.2) 49 (21.4) 187 (29.3)

50%-69% 142 (16.4) 66 (28.8) 76 (11.9)

70%-99% 82 (9.4) 62 (27.1) 20 (3.1)

100% 42 (4.8) 35 (15.3) 7 (1.1)

Percent atheroma volume 15.6 (8.9-24.8) 25.5 (16.8-33.1) 13.2 (7.3-20.4) <0.001

Percent noncalcified plaque volume 10.6 (6.6-15.9) 14.8 (10.3-19.9) 9.3 (5.4-14.0) <0.001

Percent calcified plaque volume 2.9 (0.7-8.2) 7.7 (1.8-15.6) 2.1 (0.4-5.9) <0.001

Presence of low-density plaque 782 (90.1) 216 (94.3) 566 (88.6) 0.011

Interpretable vessels 845 (97.4) 220 (96.1) 625 (97.8) 0.893

AI-QCTISCHEMIA 0.12 (0.01-0.44) 0.65 (0.33-0.91) 0.06 (0.00-0.19) <0.001

Positive AI-QCTISCHEMIA $0.31 271 (32.1) 167 (75.9) 104 (16.6) <0.001

FFRCT

Interpretable vessels 745 (85.8) 179 (78.2) 566 (88.6) <0.001

FFRCT 0.87 � 0.18 0.73 � 0.27 0.94 � 0.09 <0.001

Positive FFRCT #0.80 161 (21.6) 96 (53.6) 65 (11.5) <0.001

MPI

Interpretable vessels 856 (98.6) 229 (100.0) 627 (98.1) 0.999

SSS 0 (0-2) 1 (0-5) 0 (0-1) <0.001

Positive SSS $1 343 (40.1) 134 (58.5) 209 (33.3) <0.001

Values are n (%), median (IQR), or mean � SD.

AI-QCT ¼ artificial intelligence–guided quantitative coronary computed tomography angiography; CTA ¼ computed tomography angiography; FFR ¼ fractional flow reserve;
FFRCT ¼ fractional flow reserve from coronary computed tomography; MPI ¼ myocardial perfusion imaging; SSS ¼ summed stress score.
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DIAGNOSTIC PERFORMANCE OF AI-QCTISCHEMIA, FFRCT,

PET-CT, AND SPECT IN CREDENCE AND EXTERNAL

PACIFIC-1 VALIDATION. In the primary intention-to-
diagnose analysis of the CREDENCE validation
cohort, on a per-patient basis, AI-QCTISCHEMIA

(AUC: 0.80 [95% CI: 0.75-0.85]) outperformed FFRCT

(AUC: 0.69 [95% CI: 0.63-0.74]; P < 0.001) and MPI
(AUC: 0.65 [95% CI: 0.59-0.71]; P < 0.001) to diagnose
coronary ischemia (Figure 2, Table 4). In the per-
vessel territory analysis, AI-QCTISCHEMIA (AUC: 0.86
[95% CI: 0.84-0.89]) also outperformed FFRCT (AUC:
0.76 [95% CI: 0.72-0.80]; P < 0.001), and MPI (AUC:
0.65 [95% CI: 0.61-0.70]; P < 0.001) in diagnosing
vessel-specific coronary ischemia (Table 4). In
PACIFIC, AI-QCTISCHEMIA (AUC: 0.85 [95% CI: 0.79-
0.90]) outperformed FFRCT (AUC: 0.78 [95% CI:
0.72-0.84]; P ¼ 0.037) and SPECT (AUC: 0.72
[95% CI: 0.67-0.78]; P < 0.001) but not PET (AUC: 0.89
[95% CI: 0.84-0.93]; P ¼ 0.262 (Table 4). Similar per-
formance was found for the per-vessel territory
analysis; AI-QCTISCHEMIA achieved an AUC of 0.86
(95% CI: 0.83-0.89), similar to PET (AUC: 0.86
[95% CI: 0.81-0.90]; P ¼ 0.444) (Table 4), numerically
higher than FFRCT (AUC: 0.83; [95% CI: 0.79-0.87];
P ¼ 0.062), whereas outperforming SPECT (AUC: 0.68
[95% CI: 0.64-0.72]; P < 0.001). In the secondary
(multiple imputation) and tertiary analysis (only
interpretable vessels), performance of AI-QCTISCHEMIA

was superior to FFRCT and MPI in CREDENCE
(Supplemental Tables 3 and 4). In the secondary and
tertiary analyses in PACIFIC-1, performance of
AI-QCTISCHEMIA was comparable with FFRCT and PET,
outperforming SPECT (Supplemental Tables 3 and 4).

PREDICTION OF FUTURE CARDIOVASCULAR EVENTS

FROM PACIFIC-1. The mean follow-up time was 8.5
years (IQR: 7.9-9.3 years), during which the composite
outcome occurred in 31 (15%) patients (Table 5). Pa-
tients with positive AI-QCTISCHEMIA, FFRCT, or PET
test—but not SPECT—had worse survival compared
with patients with negative test results (Figure 2).
Adjusted for clinical atherosclerotic cardiovascular
disease (ASCVD) risk factors, the adjusted HR (aHR) for
a cardiovascular event for a positive AI-QCTISCHEMIA

test was 7.2 (95% CI: 2.5-20.6; P < 0.001) (Table 6).
Numerically lower values were observed for FFRCT

(aHR: 5.9 [95% CI: 1.8-19.9]; P ¼ 0.004), and PET

https://doi.org/10.1016/j.jcmg.2024.01.007
https://doi.org/10.1016/j.jcmg.2024.01.007
https://doi.org/10.1016/j.jcmg.2024.01.007


TABLE 3 Per-Vessel Territory Parameters for Coronary CTA, FFRCT, SPECT, and PET in PACIFIC-1

Overall
(N ¼ 612)

FFR #0.80
(n ¼ 165)

FFR >0.80
(n ¼ 447) P Value

AI-QCT

Maximum diameter stenosis <0.001

0% 108 (17.6) 8 (4.8) 100 (22.3)

1%-29% 279 (45.6) 21 (12.7) 258 (57.8)

30%-49% 64 (10.5) 23 (13.9) 41 (9.2)

50%-69% 74 (12.1) 35 (21.2) 39 (8.7)

70%-99% 69 (11.3) 60 (36.4) 9 (2.0)

100% 18 (2.9) 18 (9.1) 0 (0.0)

Percent atheroma volume 8.6 (1.5-22.4) 28.0 (15.5-41.3) 3.7 (0.9-13.6) <0.001

Percent noncalcified plaque volume 4.5 (1.3-7.5) 13.6 (8.9-21.0) 2.8 (0.9-7.4) <0.001

Percent calcified plaque volume 2.2 (0.0-6.7) 10.0 (3.8-22.7) 0.3 (0.0-4.0) <0.001

Presence of low-density plaque 162 (26.5) 100 (61.0) 62 (13.9) <0.001

Interpretable vessels 581 (94.9) 160 (97.0) 421 (94.2) 0.163

AI-QCTISCHEMIA 0.00 (0.00-0.45) 0.74 (0.31-0.95) 0.00 (0.00-0.04) <0.001

Positive AI-QCTISCHEMIA $0.31 165 (28.4) 120 (75.0) 45 (10.7) <0.001

FFRCT

Interpretable vessels 505 (82.5) 135 (81.8) 370 (82.8) 0.782

FFRCT 0.85 (0.74-0.90) 0.61 (0.50-0.74) 0.88 (0.84-0.91) <0.001

Positive FFR-CT #0.80 175 (34.7) 122 (90.4) 53 (14.3) <0.001

SPECT

Interpretable vessels 600 (98.0) 160 (97.0) 440 (98.4) 0.247

SDS 0 (0-0) 0 (0-3) 0 (0-0) <0.001

Positive SDS $2 90 (15.0) 63 (39.4) 27 (6.0) <0.001

PET

Interpretable vessels 599 (97.9) 161 (97.6) 438 (98.0) 0.754

hMBF 3.1 � 1.3 1.9 � 1.0 3.5 � 1.2 <0.001

Positive hMBF #2.30 218 (36.4) 130 (80.7) 88 (20.1) <0.001

Values are n (%), median (IQR), or mean � SD.

hMBF ¼ hyperemic myocardial blood flow; PET ¼ [15O]H2O position emission tomography; SDS ¼ summed difference score; SPECT ¼ 99mTc-tetrofosmin single-photon
emission computed tomography; other abbreviations as in Table 2.
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(aHR: 4.0 [95% CI: 1.6-10.3]; P ¼ 0.004), and SPECT
(aHR: 1.4 [95% CI: 0.6-3.0]; P ¼ 0.437). In addition,
when adjusted for the presence of obstructive stenosis,
AI-QCTISCHEMIA was the only modality to provide
additional prognostic value beyond the presence of
stenosis (aHR: 7.6 [95% CI: 1.2-47.0]; P ¼ 0.030), in
contrast to FFRCT (aHR: 3.4 [95% CI: 0.9-13.1];
P ¼ 0.072), PET (aHR: 2.3 [95% CI: 0.8-6.4]; P ¼ 0.101),
and SPECT (aHR: 0.8 [95% CI: 0.4-1.9]; P ¼ 0.691).

DISCUSSION

Using 2 of the largest multimodality imaging studies
with subjects undergoing evaluation by invasive FFR,
we observed that next-generation AI-enabled coro-
nary CTA analysis for stenosis, atherosclerosis, and
vessel morphology characteristics effectively diag-
nosed hemodynamically significant CAD. The diag-
nostic performance of the coronary CTA-based model
was similar to [15O]H2O PET and superior to FFRCT
and SPECT in prediction of per-patient presence of
reduced invasive FFR. Adjusted for clinical charac-
teristics, a positive coronary CTA-based ischemia test
put patients at a 7-fold higher risk of MACE during an
8-year follow-up and provided incremental prog-
nostic utility over stenosis. Collectively, these data
show that AI-QCTISCHEMIA can predict presence of
functional ischemia based on anatomic characteris-
tics and support its use as an accurate diagnostic and
prognostic approach to comprehensive coronary CTA-
based assessment of atherosclerosis, stenosis, and
ischemia (Central Illustration).

Previous data have shown that plaque phenotype
identified on coronary CTA associated with coronary
ischemia on invasive or noninvasive testing.23-25 In a
post hoc analysis from deFACTO (Determination of
Fractional Flow Reserve by Anatomic Computed
Tomographic Angiography), Park et al23 found an as-
sociation between adverse plaque characteristics
(positive remodeling, low-attenuation plaque, and



FIGURE 1 Feature Importance of AI-QCTISCHEMIA
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Shown is the relative importance of the parameters used in the random forest model, combined from CREDENCE validation and PACIFIC-1. The

top 5 contributing parameters in the random forest model were summed per included vessel and scaled from 0 to 1 to provide an overview of

the most important features of the model. AI-QCT ¼ artificial intelligence-guided quantitative coronary CT angiography.
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spotty calcification) and presence of vessel-specific
ischemia determined by reduced invasive FFR in
407 coronary lesions. Gaur et al,24 in a substudy of the
NXT (Analysis of Coronary Blood Flow Using CT
Angiography: Next Steps) trial, found that low-
density noncalcified plaque and FFRCT provided
diagnostic improvement over stenosis alone (AUC:
0.90 vs 0.71) for detecting ischemia defined by
reduced invasive FFR. In another post hoc analysis
from NXT,25 it was shown that in lesions with a
similar degree of luminal stenosis, lesions with
FFR #0.80 had a significantly larger necrotic core
compared with lesions with FFR >0.80. The afore-
mentioned studies focused on only several individual
quantitative and qualitative plaque characteristics
that increase the risk of coronary ischemia. Recently,
Lin et al26 were the first to develop a machine-
learning model derived from 19 plaque features
derived from semiquantitative assessment that could
predict coronary ischemia on invasive FFR and PET
imaging effectively. In the current study, we per-
formed external validation and long-term prognostic
assessment of the newly developed ischemia model
using PACIFIC-1. Using 37 AI-QCT–derived athero-
sclerotic plaque and stenosis features in a random
forest model, this study illustrates the
combined clinical potential of AI-QCT, including AI-
QCTISCHEMIA, to readily and comprehensively identify
patients and vessels with atherosclerosis, stenosis,
and ischemia.

The most important parameters of the AI-
QCTISCHEMIA model in this study were related to the
severe obstructive stenosis on coronary CTA, which
has been shown to have important diagnostic and
prognostic implications.10 However, as illustrated by
the fact that the AI-QCTISCHEMIA model provided
additional prognostic value over coronary CTA
obstructive stenosis alone, there were several other



FIGURE 2 MACE-Free Survival Stratified According to Diagnostic Modalities for Ischemia in PACIFIC-1
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Shown are Kaplan-Meier curves comparing a positive and negative test of the different imaging modalities for the primary outcome of nonfatal myocardial

infarction, nonfatal stroke, all-cause death, and coronary revascularization. AI-QCT ¼ artificial intelligence–guided quantitative coronary CT angiography;

FFR ¼ fractional flow reserve; FFRCT ¼ fractional flow reserve from coronary computed tomography; MACE ¼ major adverse cardiovascular events;

PET ¼ [15O]H2O position emission tomography; SPECT ¼ 99mTc-tetrofosmin single photon emission computed tomography.
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important parameters predictive of coronary
ischemia. Particularly, diffuseness of atherosclerotic
plaque resembled by the number of obstructive and
nonobstructive plaques as well as the length of the
lesions proved important features in the model.
This supports the hypothesis that diffuse, longer
plaques—even without obstructive stenosis—can
significantly affect myocardial blood flow caused by
abnormal epicardial coronary arterial resistance.27,28

In addition, the current study shows that plaque
volume is inversely correlated to FFR values, and—
in the model—plaque parameters, such as total
plaque volume and percent atheroma volume, were
predictors of ischemia, albeit less important than
the stenosis and plaque diffuseness parameters.
These findings are in line with previous published
reports suggesting that large plaques, particularly
low-density noncalcified plaques, can result in
ischemia and reduced FFR through local inflamma-
tory responses influencing vasodilatory capacity and
thus coronary ischemia.29,30 Finally, the character-
istics observed in the current study—albeit with
relatively limited importance—show significant
overlap with previous studies regarding plaque-



TABLE 4 Performance of AI-QCTISCHEMIA, FFRCT, and MPI for Detecting FFR #0.80, Primary Analysis

Trial/Test Sensitivity Specificity PPV NPV Accuracy AUC
AUC

P Value

(A) CREDENCE: per patient (n ¼ 305)

AI-QCTISCHEMIA 85 (78-90) 56 (48-64) 69 (62-75) 76 (67-83) 72 (66-76) 0.80 (0.75-0.85) Ref.

FFRCT 63 (56-70) 66 (58-73) 68 (60-75) 61 (54-69) 64 (59-70) 0.69 (0.63-0.74) <0.001

MPI 75 (68-81) 38 (30-46) 58 (51-65) 57 (47-67) 58 (52-63) 0.65 (0.59-0.71) <0.001

(B) PACIFIC-1: per patient (n ¼ 208)

AI-QCTISCHEMIA 92 (85-96) 72 (63-79) 73 (64-80) 91 (83-95) 81 (75-86) 0.85 (0.79-0.90) Ref.

FFRCT 97 (91-99) 48 (39-57) 61 (53-68) 95 (86-98) 70 (64-76) 0.78 (0.72-0.84) 0.037

PET 87 (79-93) 84 (76-90) 82 (73-88) 89 (82-94) 86 (80-90) 0.89 (0.84-0.93) 0.262

SPECT 51 (41-61) 93 (88-96) 86 (76-93) 70 (62-77) 74 (68-80) 0.72 (0.67-0.78) <0.001

(C) CREDENCE: per-vessel territory (n ¼ 868)

AI-QCTISCHEMIA 77 (71-82) 82 (78-85) 60 (54-66) 91 (88-93) 80 (77-83) 0.86 (0.84-0.89) Ref.

FFRCT 64 (58-70) 78 (75-82) 51 (45-58) 86 (83-89) 75 (72-78) 0.76 (0.72-0.80) <0.001

MPI 59 (52-65) 65 (61-69) 38 (32-43) 82 (78-85) 64 (60-67) 0.65 (0.61-0.70) <0.001

(D) PACIFIC-1: per-vessel territory (n ¼ 612)

AI-QCTISCHEMIA 76 (68-83) 84 (80-88) 64 (56-71) 90 (87-93) 82 (78-85) 0.86 (0.83-0.89) Ref.

FFRCT 92 (87-96) 71 (66-76) 54 (46-61) 96 (93-98) 77 (73-80) 0.83 (0.79-0.87) 0.062

PET 81 (74-88) 78 (73-84) 58 (50-66) 92 (88-95) 79 (75-83) 0.86 (0.81-0.90) 0.444

SPECT 41 (32-50) 92 (89-95) 67 (57-77) 81 (76-85) 79 (74-83) 0.68 (0.64-0.72) <0.001

Shown are the performance metrics with 95% CIs of different diagnostic modalities for myocardial ischemia to predict presence of a reduced invasive FFR #0.80 on a per-patient basis (A,B) and a per-vessel
territory basis (C,D) for both the CREDENCE (A and C) as well as PACIFIC-1 study (B and D). Results are from the primary (intention-to-diagnose) analysis; missing values were imputed as positive. Sensitivity,
specificity, PPV, and NPV and accuracy are shown as proportions in %.

NPV ¼ negative predictive value; PET ¼ [15O]H2O position emission tomography; PPV ¼ positive predictive value; SPECT ¼ 99mTc-tetrofosmin single photon emission computed tomography; other
abbreviations as in Tables 2 and 3.
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based ischemia prediction,23-25 underlining that
there are other coronary CTA-derived factors than
only the percent diameter stenosis that determine
coronary ischemia, stressing the need for a
comprehensive approach for quantification of pla-
que and vessel morphology from the entire coro-
nary artery.

The 8-year follow-up data showed that patients
with ischemia-positive vessels, as defined by AI-
QCTISCHEMIA, had worse MACE-free survival than
patients with no positive vessels independent from
clinical characteristics and presence of obstructive
stenosis, in a manner more potent than FFRCT, PET,
and SPECT. It is important to consider that
patients in the PACIFIC-1 study underwent
TABLE 5 Incidence of Major Adverse Cardiovascular Events

During PACIFIC-1 Follow-Up (N ¼ 204)

Patients With Follow-Up
Data Available

Major adverse cardiovascular eventa 31 (15.2)

Nonfatal myocardial infarction 9 (4.4)

Nonfatal stroke 4 (2.0)

All-cause death 7 (3.4)

Coronary revascularization 11 (5.4)

Values are n (%). aOnly first cardiovascular events are shown.
revascularization upon an FFR-significant lesion.
Despite revascularization, the presence of a positive
ischemia test at baseline illustrated major discrimi-
native power for MACE during follow-up. Although
speculative, these data suggest that quantitative
characteristics of coronary atherosclerosis, such as
plaque diffuseness included in the AI-QCTISCHEMIA

model, may ultimately determine prognosis in
addition to coronary stenosis or ischemia that lead
to symptoms of angina. This is in line with the re-
sults from ISCHEMIA (Initial Invasive or Conserva-
tive Strategy for Stable Coronary Disease),
illustrating that not the severity of ischemia itself
but the extent of atherosclerotic CAD predicted
future ASCVD events.11

The observation that coronary CTA-based ischemia
assessment outperformed myocardial perfusion im-
aging (except for [15O]H2O PET) in this study chal-
lenges the status quo of detection of ischemia by
myocardial perfusion imaging. An additional advan-
tage of coronary CTA over nuclear imaging techniques
is the possibility to evaluate plaque burden and ste-
nosis for prognostication.13,14 For clinical imple-
mentation of coronary CTA for diagnosis of ischemia,
an important advantage of AI-QCTISCHEMIA over FFRCT

was illustrated in both studies by its superior perfor-
mance in the primary intention-to-diagnose analysis
resembling clinical practice, driven by a combined



TABLE 6 Multivariable Cox Regression Using the Different Diagnostic Modalities for Prediction of the Primary MACE Outcome in PACIFIC-1

Test
Unadjusted
HR (95% CI) P Value

Adjusted for RF
aHR (95% CI) P Value

Adjusted for RF
and $50% Stenosis

aHR (95% CI) P Value

AI-QCTISCHEMIA 6.0 (2.3-15.7) <0.001 7.2 (2.5-20.6) <0.001 7.6 (1.2-47.0) 0.030

FFRCT 6.4 (1.9-20.9) 0.002 5.9 (1.8-19.9) 0.004 3.4 (0.9-13.1) 0.072

PET 3.7 (1.7-8.3) 0.001 4.0 (1.6-10.3) 0.004 2.3 (0.8-6.4) 0.101

SPECT 1.5 (0.7-3.2) 0.282 1.4 (0.6-3.0) 0.437 0.8 (0.4-1.9) 0.691

Shown are unadjusted adjusted HRs and P values for a positive test compared with a negative test from multivariable Cox regression models adjusted for SCORE2 risk for every
diagnostic modality separately. In addition, models were further adjusted for presence of obstructive stenosis ($50%). The primary outcome variable was a composite of
nonfatal myocardial infarction, nonfatal stroke, all-cause death, and coronary revascularization.

aHR ¼ adjusted HR; RF ¼ clinical risk factors; SCORE2 ¼ Systematic Coronary Risk Evaluation 2; other abbreviations as in Tables 2 and 3.
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AI-QCT ¼ artificial intelligence–guided quantitative coronary computed tomography angiography; CT ¼ computed tomography; CTA ¼ computed

tomography angiography; FFR ¼ fractional flow reserve; FFRCT ¼ fractional flow reserve from coronary computed tomography; MACE ¼ major adverse

cardiovascular events; MPI ¼ myocardial perfusion imaging; PET ¼ position emission tomography; SPECT ¼ single-photon emission computed

tomography.

Nurmohamed et al J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 7 , N O . 8 , 2 0 2 4

AI-QCT Algorithm for Diagnosis of Coronary Ischemia A U G U S T 2 0 2 4 : 8 9 4 – 9 0 6

904



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: AI-QCT analysis

can predict vessel-specific coronary ischemia accurately. Inte-

grating coronary atherosclerosis and vascular morphology char-

acteristics, the newly developed AI-QCTISCHEMIA model diagnosed

coronary ischemia accurately by invasive FFR and outperformed

traditional myocardial perfusion imaging.

TRANSLATIONAL OUTLOOK: This newly developed coronary

CTA-based ischemia model can be used to assess coronary

ischemia accurately and noninvasively, enabling coronary CTA to

become a comprehensive assessment of atherosclerosis, steno-

sis, and coronary ischemia. The ischemia model provides impor-

tant prognostic value for future cardiovascular events.
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4-fold lower vessel rejection rate (3.6% vs 15.5%),
limiting the need for additional (non)invasive imaging
in case of a nondiagnostic vessel. However, in the
secondary analysis (imputation), and tertiary analysis
restricted to interpretable vessels, overall perfor-
mance of the diagnostic modalities improved and
FFRCT (AUC: w0.90) performed largely similar to AI-
QCTISCHEMIA (AUC: w0.90). This is in line with previ-
ous studies from PACIFIC-1,16 NXT,31 deFACTO,32 and
DISCOVER-FLOW (Diagnosis of Ischemia-Causing
Stenoses Obtained Via Noninvasive Fractional Flow
Reserve)33 and suggests, when interpretable, a similar
discriminatory performance of AI-QCTISCHEMIA and
FFRCT for detecting vessel-specific ischemia defined
by invasive FFR.

Altogether, quantitative coronary CTA analysis
may enable an all-embracing approach to early pre-
vention, determination of ischemia to guide symptom
management, appropriate evaluation for revasculari-
zation, and accurate prognostication. The introduc-
tion of photon-counting CT scanners may even
further increase the utility of coronary CTA in such an
approach.34

STUDY LIMITATIONS. Performance of the different
diagnostic modalities was generally lower in
CREDENCE than PACIFIC-1, which may relate to a
higher prevalence and burden of CAD in CREDENCE
compared with PACIFIC-1 as well as differences in
FFR measurement. In CREDENCE, invasive FFR was
measured distal in the segment with maximal
obstructive stenosis, whereas, per PACIFIC-1 proto-
col, FFR was measured distal in the vessel. Despite
the availability of long-term follow-up data, the
relatively small sample size in PACIFIC-1 limited po-
wer for the retrospective outcome analysis. In the
quantitative plaque analysis, the amount of low-
density plaque volume was relatively small, in
contrast to other analyses using the same study
population but a different algorithm for plaque
quantification.26 Although AI-QCT has been validated
against ICA, intravascular ultrasound, optical coher-
ence tomography, near infrared spectroscopy, and
expert readers,12-14,35,36 these differences among al-
gorithms are important to consider when comparing
studies analyzed using different quantitative coro-
nary CTA algorithms. Finally, further larger prospec-
tive multicenter studies are needed to evaluate the
real-world performance of AI-QCTISCHEMIA across
different populations, also with a lower prevalence of
disease.

CONCLUSIONS

An ischemia model based on AI-guided quantitative
coronary CTA parameters can effectively diagnose
coronary ischemia as determined by invasive FFR and
provides important prognostic value for future car-
diovascular events. By its inclusion, coronary CTA
may serve as an accurate all-inclusive, multi-
parametric approach to define coronary artery
atherosclerosis, stenosis, and ischemia.
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