Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation
- Author(s)
- Hyungdong Kim; Byungyong Kim; Jonggeun Baek; Youngkee Oh; Sangmo Yun; Hyunsoo Jang
- Keimyung Author(s)
- Oh, Young Kee
- Department
- Dept. of Radiation Oncology (방사선종양학)
- Journal Title
- British Journal of Radiology
- Issued Date
- 2018
- Volume
- 91
- Issue
- 1084
- Abstract
- OBJECTIVE:
To install a low-Z target on the wedge tray mount of a medical linear accelerator to create a new image beam and to confirm image contrast enhancement.
METHODS:
Experimental low-energy photon beams were produced with the linac running in the 6 MeV electron mode and with a low-Z target installed on the wedge tray mount [denoted 6 MeV (low-Z target)]. Geant4 Monte Carlo simulation was performed to analyse the energy spectrum and image contrast of a 6 MeV (low-Z target) beam. This study modelled the 6 MeV (low-Z target) beam and the 6 MV (megavoltage) radiotherapy photon beam and verified model validity by measurement. In addition, a contrast phantom was modelled to quantitatively compare the image contrasts of the 6 MeV (low-Z target) beam and the 6 MV radiotherapy photon beam. A low-Z target was fabricated to generate low-energy photons (25-150 keV) from incident electrons, and a portal image of the Alderson RANDO phantom was acquired using a clinical linear accelerator for qualitative analysis.
RESULTS:
The measured and calculated percentage depth dose of the 6 MV photon and 6 MeV (Al) beams were consistent within 1.5 and 1.6%, respectively, and calculated lateral profiles of the 6 MV photon beam and the 6 MeV (Al) beam were consistent with the measured results within 1.5 and 1.9%, respectively. Although low-energy photons (25-150 keV) of the 6 MV photon beam were only 0.3%, the Be, C, and Al low-Z targets, but not the Ti target, generated 34.4 to 38.5% low-energy photons. In 5 to 20 cm water phantoms, contrast of the 6 MeV (Al) beam was approximately 1.16 times greater than that of the 6 MV beam. The contrasts of 6 MeV (Al) and 6 MV photon beams in the 20 cm water phantom were ~34% lower than those in the 5 cm water phantom. 6 MeV (Al)/CR (computed radiography) images of the human body phantom were more vivid and detailed than 6 MV/EPID (electronic portal imaging device) and 6 MeV (Al)/EPID images.
CONCLUSION:
The experimental beam with a low-Z target, which was simply installed on the wedge tray mount of the radiotherapy linear accelerator, generated significantly more low-energy photons than the 6 MV radiotherapy photon beam, and provided better quality portal images. Advances in knowledge: This study shows that, unlike the existing low-Z beam studies, a low-Z target can be installed outside the head of a linear accelerator to improve portal image quality.
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.