Cyclosporine A Eyedrops With Self-Nanoemulsifying Drug Delivery Systems Have Improved Physicochemical Properties and Efficacy Against Dry Eye Disease in a Murine Dry Eye Model
- Author(s)
- Seung Pil Bang; Chang Yeor Yeon; Nirpesh Adhikari; Sanjiv Neupane; Harim Kim; Dong Cheol Lee; Myeong Jin Son; Hyun Gyo Lee; Jae-Young Kim; Jong Hwa Jun
- Keimyung Author(s)
- Lee, Dong Cheol; Jun, Jong Hwa
- Department
- Dept. of Ophthalmology (안과학)
- Journal Title
- PloS one
- Issued Date
- 2019
- Volume
- 14
- Issue
- 11
- Abstract
- Purpose:
We aimed to compare the physicochemical properties and in vivo efficacy of commercially available nanoemulsion cyclosporine A (CsA) eyedrops in benzalkonium chloride (BAC)-induced dry eye disease (DED).
Methods:
Particle size analysis was performed on conventional 0.05% CsA (Restasis, C-CsA) and two new types of 0.05% CsA eyedrops based on a self-nanoemulsifying drug delivery system (SNEDDS, SNEDDS-N and -T). Turbidometry, pH measurements and instability indices of each CsA solution were measured. DED was induced with BAC, and animals were treated with vehicle or CsA preparations. Tear volume and fluorescein staining scores were evaluated on days 7 and 14. Eyes were enucleated and subjected to IHC, TUNEL staining, periodic acid-Schiff (PAS) staining, real-time PCR and western blotting.
Results:
Both SNEDDSs had lower and more uniform particle size distribution than C-CsA, and a similar optical density to phosphate-buffered saline and stable pH, in contrast to the high turbidity and unstable pH of C-CsA. Aqueous tear volume and fluorescein staining scores were improved in C-CsA- and SNEDDS-treated mice. Numbers of PAS-positive goblet cells and levels of inflammatory mediators were decreased by both C-CsA and SNEDDS, although SNEDDS resolved inflammation more effectively than C-CsA.
Conclusions:
Cyclosporine A eyedrops with SNEDDS have improved physicochemical properties and treatment efficacy in BAC-induced DED.
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.