계명대학교 의학도서관 Repository

Evaluation of the clinical efficacy of a TW3-based fully automated bone age assessment system using deep neural networks

Metadata Downloads
Author(s)
Nan-Young ShinByoung-Dai LeeJu-Hee KangHye-Rin KimDong Hyo OhByung Il LeeSung Hyun KimMu Sook LeeMin-Suk Heo
Keimyung Author(s)
Lee, Mu Sook
Department
Dept. of Radiology (영상의학)
Journal Title
Imaging Science in Dentistry
Issued Date
2020
Volume
50
Issue
3
Keyword
Age Determination by SkeletonRadiographyDeep LearningArtificial Intelligence
Abstract
Purpose:
The aim of this study was to evaluate the clinical efficacy of a Tanner-Whitehouse 3 (TW3)-based fully automated bone age assessment system on hand-wrist radiographs of Korean children and adolescents.

Materials and Methods:
Hand-wrist radiographs of 80 subjects (40 boys and 40 girls, 7–15 years of age) were collected. The clinical efficacy was evaluated by comparing the bone ages that were determined using the system with those from the reference standard produced by 2 oral and maxillofacial radiologists. Comparisons were conducted using the paired t-test and simple regression analysis.

Results:
The bone ages estimated with this bone age assessment system were not significantly different from those obtained with the reference standard (P>0.05) and satisfied the equivalence criterion of 0.6 years within the 95% confidence interval (− 0.07 to 0.22), demonstrating excellent performance of the system. Similarly, in the comparisons of gender subgroups, no significant difference in bone age between the values produced by the system and the reference standard was observed (P>0.05 for both boys and girls). The determination coefficients obtained via regression analysis were 0.962, 0.945, and 0.952 for boys, girls, and overall, respectively (P=0.000); hence, the radiologist-determined bone ages and the system-determined bone ages were strongly correlated.

Conclusion:
This TW3-based system can be effectively used for bone age assessment based on hand-wrist radiographs of Korean children and adolescents.
Keimyung Author(s)(Kor)
이무숙
Publisher
School of Medicine (의과대학)
Citation
Nan-Young Shin et al. (2020). Evaluation of the clinical efficacy of a TW3-based fully automated bone age assessment system using deep neural networks. Imaging Science in Dentistry, 50(3), 237–243. doi: 10.5624/isd.2020.50.3.237
Type
Article
ISSN
2233-7830
Source
https://isdent.org/search.php?where=aview&id=10.5624/isd.2020.50.3.237&code=2080ISD&vmode=FULL
DOI
10.5624/isd.2020.50.3.237
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/42842
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Radiology (영상의학)
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.