Flexible and highly ordered nanopillar electrochemical sensor for sensitive insulin evaluation
- Author(s)
- Yoo Min Park; Young Sun Choi; Hye-Rim Lee; Yun Seok Heo; Nam Ho Bae; Tae Jae Lee; Seok Jae Lee
- Keimyung Author(s)
- Heo, Yun Seok
- Department
- Dept. of Biomedical Engineering (의용공학과)
- Journal Title
- Biosensors & bioelectronics
- Issued Date
- 2020
- Volume
- 161
- Abstract
- In line with growing interest in obesity management, there has been an increase in the amount of research focused on highly sensitive analysis systems for a small number of biomarers. In this paper, we introduce the highly ordered nanopillar electrode, featuring a high aspect ratio surface area that enables enhanced electron transfer. For fabrication of the flexible electrode, gold was evaporated by electronic beam lithography on polyurethane (PU), which has high flexibility. The fabricated nanopillar is 500 nm in diameter and 1500 nm in height. Based on the highly ordered nanostructure electrode, insulin was selected as a biomarker to monitor the insulin resistance associated with obesity. To effectively analyze the insulin, the self-assembled monolayer chemical was used to introduce the enzyme catalysis-based electrochemical immunoassay, leading to the analysis of the insulin concentration range from 0.1 to 1.0 ng/mL in the real sample. The square wave voltammetry principle was used to measure HRP-based electrochemical signal both electrochemically and quantitatively. Based on the nanostructural properties of significant electrochemical behavior, we successfully analyzed insulin in the plasma sample with high sensitivity (LOD of 0.1 ng/mL) and with high reproducibility (<10%). The obtained sensitivity of nanopillar electrode is approximately 10 times (1020%) greater than that of commercial electrode. The results demonstrated that the nanopillar electrode is suitable for precise and sensitive analysis of low-level biomolecules in medical and commercial fields.
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.