계명대학교 의학도서관 Repository

Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence

Metadata Downloads
Author(s)
Rebecca JonasJames EarlsHugo MarquesHyuk-Jae ChangJung Hyun ChoiJoon-Hyung DohAe-Young HerBon Kwon KooChang-Wook NamHyung-Bok ParkSanghoon ShinJason ColeAlessia GimelliMuhammad Akram KhanBin LuYang GaoFaisal NabiRyo NakazatoU Joseph SchoepfRoel S DriessenMichiel J BomRandall C ThompsonJames J JangMichael RidnerChris RowanErick AvelarPhilippe GénéreuxPaul KnaapenGuus A de WaardGianluca PontoneDaniele AndreiniMouaz H Al-MallahRobert JenningsTami R CrabtreeTodd C VillinesJames K MinAndrew D Choi
Keimyung Author(s)
Nam, Chang Wook
Department
Dept. of Internal Medicine (내과학)
Journal Title
Open Heart
Issued Date
2021
Volume
8
Issue
2
Abstract
Objective:
The study evaluates the relationship of coronary stenosis, atherosclerotic plaque characteristics (APCs) and age using artificial intelligence enabled quantitative coronary computed tomographic angiography (AI-QCT).

Methods:
This is a post-hoc analysis of data from 303 subjects enrolled in the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic Determinants of Myocardial IsChEmia) trial who were referred for invasive coronary angiography and subsequently underwent coronary computed tomographic angiography (CCTA). In this study, a blinded core laboratory analysing quantitative coronary angiography images classified lesions as obstructive (≥50%) or non-obstructive (<50%) while AI software quantified APCs including plaque volume (PV), low-density non-calcified plaque (LD-NCP), non-calcified plaque (NCP), calcified plaque (CP), lesion length on a per-patient and per-lesion basis based on CCTA imaging. Plaque measurements were normalised for vessel volume and reported as % percent atheroma volume (%PAV) for all relevant plaque components. Data were subsequently stratified by age <65 and ≥65 years.

Results:
The cohort was 64.4±10.2 years and 29% women. Overall, patients >65 had more PV and CP than patients <65. On a lesion level, patients >65 had more CP than younger patients in both obstructive (29.2 mm3 vs 48.2 mm3; p<0.04) and non-obstructive lesions (22.1 mm3 vs 49.4 mm3; p<0.004) while younger patients had more %PAV (LD-NCP) (1.5% vs 0.7%; p<0.038). Younger patients had more PV, LD-NCP, NCP and lesion lengths in obstructive compared with non-obstructive lesions. There were no differences observed between lesion types in older patients.

Conclusion:
AI-QCT identifies a unique APC signature that differs by age and degree of stenosis and provides a foundation for AI-guided age-based approaches to atherosclerosis identification, prevention and treatment.
Keimyung Author(s)(Kor)
남창욱
Publisher
School of Medicine (의과대학)
Citation
Rebecca Jonas et al. (2021). Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart, 8(2), e001832. doi: 10.1136/openhrt-2021-001832
Type
Article
ISSN
2053-3624
Source
https://openheart.bmj.com/content/8/2/e001832
DOI
10.1136/openhrt-2021-001832
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/44146
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Internal Medicine (내과학)
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.