계명대학교 의학도서관 Repository

Coronary CTA With AI-QCT Interpretation: Comparison With Myocardial Perfusion Imaging for Detection of Obstructive Stenosis Using Invasive Angiography as Reference Standard

Metadata Downloads
Author(s)
Isabella LipkinAnha TelluriYumin KimAlfateh SidahmedJoseph M. KreppBrian G. ChoiRebecca JonasHugo MarquesHyuk-Jae ChangJung Hyun ChoiJoon-Hyung DohAe-Young HerBon-Kwon KooChang-Wook NamHyung-Bok ParkSang-Hoon ShinJason ColeAlessia GimelliMuhammad Akram KhanBin LuYang GaoFaisal NabiRyo NakazatoU. Joseph SchoepfRoel S. DriessenMichiel J. BomJames J. JangMichael RidnerChris RowanErick AvelarPhilippe GénéreuxPaul KnaapenGuus A. de WaardGianluca PontoneDaniele AndreiniMouaz H. Al-MallahTami R. CrabtreeJames P. EarlsAndrew D. ChoiJames K. Min
Keimyung Author(s)
Nam, Chang Wook
Department
Dept. of Internal Medicine (내과학)
Journal Title
AJR Am J Roentgenol
Issued Date
2022
Volume
219
Issue
3
Keyword
artificial intelligenceatherosclerosisCCTAcoronary artery diseasecoronary CTcoronary CTAfractional flow reservequantitative coronary angiography
Abstract
BACKGROUND:
Deep learning frameworks have been applied to interpretation of coronary CTA performed for coronary artery disease (CAD) evaluation.

OBJECTIVE:
The purpose of our study was to compare the diagnostic performance of myocardial perfusion imaging (MPI) and coronary CTA with artificial intelligence quantitative CT (AI-QCT) interpretation for detection of obstructive CAD on invasive angiography and to assess the downstream impact of including coronary CTA with AI-QCT in diagnostic algorithms.

METHODS.
This study entailed a retrospective post hoc analysis of the derivation cohort of the prospective 23-center Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia (CREDENCE) trial. The study included 301 patients (88 women and 213 men; mean age, 64.4 ± 10.2 [SD] years) recruited from May 2014 to May 2017 with stable symptoms of myocardial ischemia referred for nonemergent invasive angiography. Patients underwent coronary CTA and MPI before angiography with quantitative coronary angiography (QCA) measurements and fractional flow reserve (FFR). CTA examinations were analyzed using an FDA-cleared cloud-based software platform that performs AI-QCT for stenosis determination. Diagnostic performance was evaluated. Diagnostic algorithms were compared.

RESULTS:
Among 102 patients with no ischemia on MPI, AI-QCT identified obstructive (≥ 50%) stenosis in 54% of patients, including severe (≥ 70%) stenosis in 20%. Among 199 patients with ischemia on MPI, AI-QCT identified nonobstructive (1–49%) stenosis in 23%. AI-QCT had significantly higher AUC (all p < .001) than MPI for predicting ≥ 50% stenosis by QCA (0.88 vs 0.66), ≥ 70% stenosis by QCA (0.92 vs 0.81), and FFR < 0.80 (0.90 vs 0.71). An AI-QCT result of ≥ 50% stenosis and ischemia on stress MPI had sensitivity of 95% versus 74% and specificity of 63% versus 43% for detecting ≥ 50% stenosis by QCA measurement. Compared with performing MPI in all patients and those showing ischemia undergoing invasive angiography, a scenario of performing coronary CTA with AIQCT in all patients and those showing ≥ 70% stenosis undergoing invasive angiography would reduce invasive angiography utilization by 39%; a scenario of performing MPI in all patients and those showing ischemia undergoing coronary CTA with AI-QCT and those with ≥ 70% stenosis on AI-QCT undergoing invasive angiography would reduce invasive angiography utilization by 49%.

CONCLUSION:
Coronary CTA with AI-QCT had higher diagnostic performance than MPI for detecting obstructive CAD.

CLINICAL IMPACT:
A diagnostic algorithm incorporating AI-QCT could substantially reduce unnecessary downstream invasive testing and costs.





Read More: https://www.ajronline.org/doi/10.2214/AJR.21.27289
Keimyung Author(s)(Kor)
남창욱
Publisher
School of Medicine (의과대학)
Type
Article
ISSN
1546-3141
Source
https://www.ajronline.org/doi/10.2214/AJR.21.27289
DOI
10.2214/AJR.21.27289
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/44354
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Internal Medicine (내과학)
공개 및 라이선스
  • 공개 구분공개
  • 엠바고Forever
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.