계명대학교 의학도서관 Repository

Predictive System Implementation to Improve the Accuracy of Urine Self-Diagnosis with Smartphones: Application of a Confusion Matrix-Based Learning Model through RGB Semiquantitative Analysis

Metadata Downloads
Author(s)
Seon-Chil KimYoung-Sik Cho
Keimyung Author(s)
Kim, Seon Chil
Department
Dept. of Biomedical Engineering (의용공학과)
Journal Title
Sensors (Basel)
Issued Date
2022
Volume
22
Issue
14
Keyword
linearitysemi-quantitative analysisRGBurinalysissmartphone
Abstract
Urinalysis, an elementary chemical reaction-based method for analyzing color conversion factors, facilitates examination of pathological conditions in the human body. Recently, considerable urinalysis-centered research has been conducted on the analysis of urine dipstick colors using smartphone cameras; however, such methods have a drawback: the problem of reproducibility of accuracy through quantitative analysis. In this study, to solve this problem, the function values for each concentration of a range of analysis factors were implemented in an algorithm through urine dipstick RGB semi-quantitative color analysis to enable real-time results. Herein, pH, glucose, ketones, hemoglobin, bilirubin, protein (albumin), and nitrites were selected as analysis factors, and the accuracy levels of the existing equipment and the test application were compared and evaluated using artificial urine. In the semi-quantitative analysis, the red (R), green (G), and blue (B) characteristic values were analyzed by extracting the RGB characteristic values of the analysis factors for each concentration of artificial urine and obtaining linear function values. In addition, to improve the reproducibility of detection accuracy, the measurement value of the existing test equipment was set to an absolute value; using a machine-learning technique, the confusion matrix, we attempted to stabilize test results that vary with environment.
Keimyung Author(s)(Kor)
김선칠
Publisher
School of Medicine (의과대학)
Type
Article
ISSN
1424-8220
Source
https://www.mdpi.com/1424-8220/22/14/5445
DOI
10.3390/s22145445
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/44405
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Biomedical Engineering (의용공학과)
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.