계명대학교 의학도서관 Repository

Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation

Metadata Downloads
Author(s)
JoonNyung HeoHyungwoo LeeYoung SeogSungeun KimJang-Hyun BaekHyungjong ParkKwon-Duk SeoGyu Sik KimHan-Jin ChoMinyoul BaikJoonsang YooJinkwon KimJun LeeYoonkyung ChangTae-Jin SongJung Hwa SeoSeong Hwan AhnHeow Won LeeIl KwonEunjeong ParkByung Moon KimDong Joon KimYoung Dae KimHyo Suk Nam
Keimyung Author(s)
Park, Hyung Jong
Department
Dept. of Neurology (신경과학)
Journal Title
Stroke
Issued Date
2023
Volume
54
Issue
8
Keyword
machine learningstrokethrombectomy
Abstract
Background:
We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy.

Methods:
This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke.

Results:
The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%.

Conclusions:
Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.
Keimyung Author(s)(Kor)
박형종
Publisher
School of Medicine (의과대학)
Type
Article
ISSN
1524-4628
Source
https://www.ahajournals.org/doi/10.1161/STROKEAHA.123.043127
DOI
10.1161/STROKEAHA.123.043127
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/45304
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Neurology (신경과학)
공개 및 라이선스
  • 공개 구분공개
  • 엠바고Forever
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.