계명대학교 의학도서관 Repository

Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo

Metadata Downloads
Author(s)
Eun Young ParkSungmoon JeongSohee KangJungrae ChoJu-Yeon ChoEun-Kyong Kim
Keimyung Author(s)
Cho, Ju Yeon
Department
Dept. of Dentistry (치과학)
Journal Title
BMC Oral Health
Issued Date
2023
Volume
23
Issue
1
Keyword
Artificial intelligenceConvolutional neural networkDeep learningQuantitative light-induced fluorescenceTooth surface segmentation
Abstract
Background:
Owing to the remarkable advancements of artificial intelligence (AI) applications, AI-based detection of dental caries is continuously improving. We evaluated the efficacy of the detection of dental caries with quantitative light-induced fluorescence (QLF) images using a convolutional neural network (CNN) model.

Methods:
Overall, 2814 QLF intraoral images were obtained from 606 participants at a dental clinic using Qraypen C® (QC, AIOBIO, Seoul, Republic of Korea) from October 2020 to October 2022. These images included all the types of permanent teeth of which surfaces were smooth or occlusal. Dataset were randomly assigned to the training (56.0%), validation (14.0%), and test (30.0%) subsets of the dataset for caries classification. Moreover, masked images for teeth area were manually prepared to evaluate the segmentation efficacy. To compare diagnostic performance for caries classification according to the types of teeth, the dataset was further classified into the premolar (1,143 images) and molar (1,441 images) groups. As the CNN model, Xception was applied.

Results:
Using the original QLF images, the performance of the classification algorithm was relatively good showing 83.2% of accuracy, 85.6% of precision, and 86.9% of sensitivity. After applying the segmentation process for the tooth area, all the performance indics including 85.6% of accuracy, 88.9% of precision, and 86.9% of sensitivity were improved. However, the performance indices of each type of teeth (both premolar and molar) were similar to those for all teeth.

Conclusion:
The application of AI to QLF images for caries classification demonstrated a good performance regardless of teeth type among posterior teeth. Additionally, tooth area segmentation through background elimination from QLF images exhibited a better performance.
Keimyung Author(s)(Kor)
조주연
Publisher
School of Medicine (의과대학)
Type
Article
ISSN
1472-6831
Source
https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-023-03669-6
DOI
10.1186/s12903-023-03669-6
URI
https://kumel.medlib.dsmc.or.kr/handle/2015.oak/45446
Appears in Collections:
1. School of Medicine (의과대학) > Dept. of Dentistry (치과학)
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.