Machine learning-based prediction model for emergency department visits using prescription information in community-dwelling non-cancer older adults
- Author(s)
- Soyoung Park; Changwoo Lee; Seung-Bo Lee; Ju-Yeun Lee
- Keimyung Author(s)
- Lee, Seung Bo
- Department
- Dept. of Medical Information (의료정보학)
- Journal Title
- Sci Rep
- Issued Date
- 2023
- Volume
- 13
- Issue
- 1
- Abstract
- Older adults are more likely to require emergency department (ED) visits than others, which might be attributed to their medication use. Being able to predict the likelihood of an ED visit using prescription information and readily available data would be useful for primary care. This study aimed to predict the likelihood of ED visits using extensive medication variables generated according to explicit clinical criteria for elderly people and high-risk medication categories by applying machine learning (ML) methods. Patients aged ≥ 65 years were included, and ED visits were predicted with 146 variables, including demographic and comprehensive medication-related factors, using nationwide claims data. Among the eight ML models, the final model was developed using LightGBM, which showed the best performance. The final model incorporated 93 predictors, including six sociodemographic, 28 comorbidity, and 59 medication-related variables. The final model had an area under the receiver operating characteristic curve of 0.689 in the validation cohort. Approximately half of the top 20 strong predictors were medication-related variables. Here, an ED visit risk prediction model for older people was developed and validated using administrative data that can be easily applied in clinical settings to screen patients who are likely to visit an ED.
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.